BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25424444)

  • 1. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing.
    Anasontzis GE; Christakopoulos P
    Bioengineered; 2014; 5(6):393-5. PubMed ID: 25424444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose.
    Ali SS; Nugent B; Mullins E; Doohan FM
    PLoS One; 2013; 8(1):e54701. PubMed ID: 23382943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusarium oxysporum: status in bioethanol production.
    Singh A; Kumar PK
    Crit Rev Biotechnol; 1991; 11(2):129-47. PubMed ID: 1913845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.
    Anasontzis GE; Kourtoglou E; Villas-Boâs SG; Hatzinikolaou DG; Christakopoulos P
    Front Microbiol; 2016; 7():632. PubMed ID: 27199958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing.
    Zerva A; Savvides AL; Katsifas EA; Karagouni AD; Hatzinikolaou DG
    Bioresour Technol; 2014 Jun; 162():294-9. PubMed ID: 24759646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.
    Paschos T; Xiros C; Christakopoulos P
    BMC Biotechnol; 2015 Mar; 15():15. PubMed ID: 25887038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry.
    Ali SS; Nugent B; Mullins E; Doohan FM
    AMB Express; 2016 Mar; 6(1):13. PubMed ID: 26888202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae.
    de Almeida MN; Guimarães VM; Falkoski DL; Visser EM; Siqueira GA; Milagres AM; de Rezende ST
    J Biotechnol; 2013 Oct; 168(1):71-7. PubMed ID: 23942376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulosic ethanol: Technology design and its impact on process efficiency.
    Paulova L; Patakova P; Branska B; Rychtera M; Melzoch K
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1091-107. PubMed ID: 25485865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid.
    Xu J; Wang X; Hu L; Xia J; Wu Z; Xu N; Dai B; Wu B
    Bioresour Technol; 2015 Apr; 181():18-25. PubMed ID: 25625459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose.
    Xu Q; Singh A; Himmel ME
    Curr Opin Biotechnol; 2009 Jun; 20(3):364-71. PubMed ID: 19520566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges for the production of bioethanol from biomass using recombinant yeasts.
    Kricka W; Fitzpatrick J; Bond U
    Adv Appl Microbiol; 2015; 92():89-125. PubMed ID: 26003934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.
    Sànchez Nogué V; Karhumaa K
    Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics.
    Anasontzis GE; Zerva A; Stathopoulou PM; Haralampidis K; Diallinas G; Karagouni AD; Hatzinikolaou DG
    J Biotechnol; 2011 Mar; 152(1-2):16-23. PubMed ID: 21237221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification.
    Liu X; Xu W; Mao L; Zhang C; Yan P; Xu Z; Zhang ZC
    Sci Rep; 2016 Feb; 6():20361. PubMed ID: 26837707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioethanol production from
    Nongthombam GD; Sarangi PK; Singh TA; Sharma CK; Talukdar NC
    3 Biotech; 2022 Sep; 12(9):178. PubMed ID: 35865259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.