These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 25424492)

  • 1. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
    Fang Y; Zhang Z; Chen L; Sun M
    Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy.
    Sun M; Fang Y; Zhang Z; Xu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020401. PubMed ID: 23496445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS.
    Zhang Z; Sun M; Ruan P; Zheng H; Xu H
    Nanoscale; 2013 May; 5(10):4151-5. PubMed ID: 23575811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.
    Fang Y; Zhang Z; Sun M
    Rev Sci Instrum; 2016 Mar; 87(3):033104. PubMed ID: 27036755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection.
    Zhang M; Wang J; Tian Q
    Opt Express; 2013 Apr; 21(8):9414-21. PubMed ID: 23609652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy.
    Liu P; Chulhai DV; Jensen L
    ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tip-enhanced Raman spectroscopy: tip-related issues.
    Huang TX; Huang SC; Li MH; Zeng ZC; Wang X; Ren B
    Anal Bioanal Chem; 2015 Nov; 407(27):8177-95. PubMed ID: 26314483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evanescent-field-induced Raman scattering for bio-friendly fingerprinting at sub-cellular dimension.
    Snopok B; Naumenko D; Serviene E; Bruzaite I; Stogrin A; Kulys J; Snitka V
    Talanta; 2014 Oct; 128():414-21. PubMed ID: 25059180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing electromagnetic field gradient in tip-enhanced Raman spectroscopy with a perfect radially polarized beam.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2022 Jun; 30(12):21377-21385. PubMed ID: 36224858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy.
    Sun M; Zhang Z; Zheng H; Xu H
    Sci Rep; 2012; 2():647. PubMed ID: 22970339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy.
    Watanabe H; Hayazawa N; Inouye Y; Kawata S
    J Phys Chem B; 2005 Mar; 109(11):5012-20. PubMed ID: 16863161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL; Lin VK; Marty R; Large N; Llado EA; Arbouet A; Girard C; Aizpurua J; Tripathy S; Mlayah A
    Opt Express; 2010 Oct; 18(21):22271-82. PubMed ID: 20941128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips.
    Bao W; Staffaroni M; Bokor J; Salmeron MB; Yablonovitch E; Cabrini S; Weber-Bargioni A; Schuck PJ
    Opt Express; 2013 Apr; 21(7):8166-76. PubMed ID: 23571906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy.
    Meng L; Yang Z; Chen J; Sun M
    Sci Rep; 2015 Mar; 5():9240. PubMed ID: 25784161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS.
    Zhang Z; Chen L; Sun M; Ruan P; Zheng H; Xu H
    Nanoscale; 2013 Apr; 5(8):3249-52. PubMed ID: 23512070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating.
    Mattiucci N; D'Aguanno G; Everitt HO; Foreman JV; Callahan JM; Buncick MC; Bloemer MJ
    Opt Express; 2012 Jan; 20(2):1868-77. PubMed ID: 22274532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.