BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 25424593)

  • 1. Emerging strategies for RNA interference (RNAi) applications in insects.
    Nandety RS; Kuo YW; Nouri S; Falk BW
    Bioengineered; 2015; 6(1):8-19. PubMed ID: 25424593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense.
    Zhao S; Kong X; Wu X
    Dev Comp Immunol; 2021 Sep; 122():104116. PubMed ID: 33991532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIWI pathway against viruses in insects.
    Kolliopoulou A; Santos D; Taning CNT; Wynant N; Vanden Broeck J; Smagghe G; Swevers L
    Wiley Interdiscip Rev RNA; 2019 Nov; 10(6):e1555. PubMed ID: 31183996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous Viral Element-Derived Piwi-Interacting RNAs (piRNAs) Are Not Required for Production of Ping-Pong-Dependent piRNAs from Diaphorina citri Densovirus.
    Nigg JC; Kuo YW; Falk BW
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering host-derived resistance against plant parasites through RNA interference: challenges and opportunities.
    Runo S
    Bioeng Bugs; 2011; 2(4):208-13. PubMed ID: 21829096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control.
    Adeyinka OS; Riaz S; Toufiq N; Yousaf I; Bhatti MU; Batcho A; Olajide AA; Nasir IA; Tabassum B
    Mol Biol Rep; 2020 Aug; 47(8):6309-6319. PubMed ID: 32696345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects.
    Santos D; Mingels L; Vogel E; Wang L; Christiaens O; Cappelle K; Wynant N; Gansemans Y; Van Nieuwerburgh F; Smagghe G; Swevers L; Vanden Broeck J
    Viruses; 2019 Aug; 11(8):. PubMed ID: 31405199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interplay Between Viruses and RNAi Pathways in Insects.
    Bonning BC; Saleh MC
    Annu Rev Entomol; 2021 Jan; 66():61-79. PubMed ID: 33417818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological mechanisms determining the success of RNA interference in insects.
    Wynant N; Santos D; Vanden Broeck J
    Int Rev Cell Mol Biol; 2014; 312():139-67. PubMed ID: 25262241
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Coffman SR; Lu J; Guo X; Zhong J; Jiang H; Broitman-Maduro G; Li WX; Lu R; Maduro M; Ding SW
    mBio; 2017 Mar; 8(2):. PubMed ID: 28325765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms, Applications, and Challenges of Insect RNA Interference.
    Zhu KY; Palli SR
    Annu Rev Entomol; 2020 Jan; 65():293-311. PubMed ID: 31610134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes.
    Waldron FM; Stone GN; Obbard DJ
    PLoS Genet; 2018 Jul; 14(7):e1007533. PubMed ID: 30059538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting protein domain variability in the core RNA interference machinery of five insect orders.
    Arraes FBM; Martins-de-Sa D; Noriega Vasquez DD; Melo BP; Faheem M; de Macedo LLP; Morgante CV; Barbosa JARG; Togawa RC; Moreira VJV; Danchin EGJ; Grossi-de-Sa MF
    RNA Biol; 2021 Nov; 18(11):1653-1681. PubMed ID: 33302789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.
    Miesen P; Ivens A; Buck AH; van Rij RP
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004452. PubMed ID: 26914027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms influencing efficiency of RNA interference in insects.
    Cooper AM; Silver K; Zhang J; Park Y; Zhu KY
    Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA interference in insects: the link between antiviral defense and pest control.
    Niu J; Chen R; Wang JJ
    Insect Sci; 2024 Feb; 31(1):2-12. PubMed ID: 37162315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mysteries of insect RNAi: A focus on dsRNA uptake and transport.
    VĂ©lez AM; Fishilevich E
    Pestic Biochem Physiol; 2018 Oct; 151():25-31. PubMed ID: 30704709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAi: future in insect management.
    Burand JP; Hunter WB
    J Invertebr Pathol; 2013 Mar; 112 Suppl():S68-74. PubMed ID: 22841639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.