These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 25424693)

  • 1. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.
    Tsuge Y; Hasunuma T; Kondo A
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.
    Baritugo KA; Kim HT; David Y; Choi JI; Hong SH; Jeong KJ; Choi JH; Joo JC; Park SJ
    Appl Microbiol Biotechnol; 2018 May; 102(9):3915-3937. PubMed ID: 29557518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-based production of organic acids with Corynebacterium glutamicum.
    Wieschalka S; Blombach B; Bott M; Eikmanns BJ
    Microb Biotechnol; 2013 Mar; 6(2):87-102. PubMed ID: 23199277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products.
    Kogure T; Inui M
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8685-8705. PubMed ID: 30109397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
    Zhao N; Qian L; Luo G; Zheng S
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9517-9529. PubMed ID: 30218378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade L- and D-lactic acid.
    Tsuge Y; Kato N; Yamamoto S; Suda M; Jojima T; Inui M
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3381-3391. PubMed ID: 30877357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids.
    Wendisch VF; Bott M; Eikmanns BJ
    Curr Opin Microbiol; 2006 Jun; 9(3):268-74. PubMed ID: 16617034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate.
    Litsanov B; Brocker M; Bott M
    Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum.
    Chung SC; Park JS; Yun J; Park JH
    Metab Eng; 2017 Mar; 40():157-164. PubMed ID: 28232033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM; Um Y; Bott M; Woo HM
    FEMS Microbiol Lett; 2015 Oct; 362(19):. PubMed ID: 26363018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum.
    Tsuge Y; Matsuzawa H
    World J Microbiol Biotechnol; 2021 Feb; 37(3):49. PubMed ID: 33569648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum.
    Woo HM; Park JB
    J Biotechnol; 2014 Jun; 180():43-51. PubMed ID: 24632177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system.
    Zhu N; Xia H; Yang J; Zhao X; Chen T
    Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation.
    Okino S; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):475-80. PubMed ID: 15672268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced production of d-lactate from mixed sugars in Corynebacterium glutamicum by overexpression of glycolytic genes encoding phosphofructokinase and triosephosphate isomerase.
    Tsuge Y; Kato N; Yamamoto S; Suda M; Inui M
    J Biosci Bioeng; 2019 Mar; 127(3):288-293. PubMed ID: 30196009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production.
    Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K
    J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of overexpressing isocitrate lyase on succinate production in ldh(-1) Corynebacterium glutamicum].
    Yang C; Hao N; Yan M; Gao L; Xu L
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1696-700. PubMed ID: 24701837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metabolic shift of Corynebacterium acetoacidophilum-deltaldh under oxygen deprivation conditions].
    Yang Q; Zheng P; Yu F; Liu W; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2014 Mar; 30(3):435-44. PubMed ID: 25007579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.