These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25424726)

  • 21. Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host-guest inclusion complexation.
    Zhao Q; Wang S; Cheng X; Yam RC; Kong D; Li RK
    Biomacromolecules; 2010 May; 11(5):1364-9. PubMed ID: 20359199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector.
    Ghodke S; Mahajan P; Gupta K; Ver Avadhani C; Dandekar P; Jain R
    Curr Gene Ther; 2019; 19(4):274-287. PubMed ID: 31393245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suspending Polyrotaxane Dissociation via Photo-Reversible Capping of Terminals.
    Arisaka Y; Yui N
    Macromol Rapid Commun; 2019 Oct; 40(20):e1900323. PubMed ID: 31429992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gelatin nanoparticles loaded poly(ε-caprolactone) nanofibrous semi-synthetic scaffolds for bone tissue engineering.
    Binulal NS; Natarajan A; Menon D; Bhaskaran VK; Mony U; Nair SV
    Biomed Mater; 2012 Dec; 7(6):065001. PubMed ID: 23047255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.
    Kakinoki S; Yui N; Yamaoka T
    J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic degradation of supramolecular materials based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Meng X; Cheng C; Dong Z; Zhang S; Li B
    J Phys Chem B; 2010 Apr; 114(13):4739-45. PubMed ID: 20235496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and structural analysis of polyrotaxane fibers and films.
    Sakai Y; Ueda K; Katsuyama N; Shimizu K; Sato S; Kuroiwa J; Araki J; Teramoto A; Abe K; Yokoyama H; Ito K
    J Phys Condens Matter; 2011 Jul; 23(28):284108. PubMed ID: 21709323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin.
    Hu LZ; Wan N; Ma XX; Jing ZW; Zhang YX; Li C; Zhou SY; Zhang BL
    Nanotechnology; 2017 Mar; 28(12):125102. PubMed ID: 28163261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polysaccharide-coated PCL nanofibers for wound dressing applications.
    Croisier F; Atanasova G; Poumay Y; Jérôme C
    Adv Healthc Mater; 2014 Dec; 3(12):2032-9. PubMed ID: 25263074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation and degradation of layer-by-layer-assembled polyelectrolyte polyrotaxane capsules.
    Dam HH; Caruso F
    Langmuir; 2013 Jun; 29(24):7203-8. PubMed ID: 23368764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells.
    Guo G; Fu S; Zhou L; Liang H; Fan M; Luo F; Qian Z; Wei Y
    Nanoscale; 2011 Sep; 3(9):3825-32. PubMed ID: 21847493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two Different Approaches for Oral Administration of Voriconazole Loaded Formulations: Electrospun Fibers versus β-Cyclodextrin Complexes.
    Siafaka PI; Üstündağ Okur N; Mone M; Giannakopoulou S; Er S; Pavlidou E; Karavas E; Bikiaris DN
    Int J Mol Sci; 2016 Feb; 17(3):282. PubMed ID: 26927072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Preparation and cytocompatibility study of poly (epsilon-caprolactone)/silk sericin nanofibrous scaffolds].
    Li H; Li L; Qian Y; Cai K; Lu Y; Zhong L; Liu W; Yang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):305-9. PubMed ID: 21604491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coaxially electrospun scaffolds based on hydroxyl-functionalized poly(ε-caprolactone) and loaded with VEGF for tissue engineering applications.
    Seyednejad H; Ji W; Yang F; van Nostrum CF; Vermonden T; van den Beucken JJ; Dhert WJ; Hennink WE; Jansen JA
    Biomacromolecules; 2012 Nov; 13(11):3650-60. PubMed ID: 23039047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts.
    Zhang YZ; Venugopal J; Huang ZM; Lim CT; Ramakrishna S
    Biomacromolecules; 2005; 6(5):2583-9. PubMed ID: 16153095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of 2-hydroxypropyl-β-cyclodextrin/pluronic-based polyrotaxanes via heterogeneous reaction as potential Niemann-Pick type C therapeutics.
    Mondjinou YA; McCauliff LA; Kulkarni A; Paul L; Hyun SH; Zhang Z; Wu Z; Wirth M; Storch J; Thompson DH
    Biomacromolecules; 2013 Dec; 14(12):4189-97. PubMed ID: 24180231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SPRi determination of inter-peptide interaction by using 3D supramolecular co-assembly polyrotaxane film.
    Wang Y; Wang C; Cheng Z; Zhang D; Li S; Song L; Zhou W; Yang M; Wang Z; Zheng Z; Han B; Wang C; Yang Y; Zhu J
    Biosens Bioelectron; 2015 Apr; 66():338-44. PubMed ID: 25437373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation and self-organization kinetics of alpha-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 degrees C.
    Travelet C; Schlatter G; Hébraud P; Brochon C; Lapp A; Hadziioannou G
    Langmuir; 2009 Aug; 25(15):8723-34. PubMed ID: 19301842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular Hydrogels Based on MPEG-Grafted Hyaluronic Acid and α-CD Containing HP-β-CD/Simvastatin Enhance Osteogenesis In Vivo.
    Yoon SJ; Kim EC; Noh K; Lee DW
    J Nanosci Nanotechnol; 2017 Jan; 17(1):217-23. PubMed ID: 29617547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.