These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 25425065)
1. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis). Han H; Sun X; Xie Y; Feng J; Zhang S BMC Plant Biol; 2014 Nov; 14():305. PubMed ID: 25425065 [TBL] [Abstract][Full Text] [Related]
2. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting. Li KP; Sun XM; Han H; Zhang SG Gene; 2014 Nov; 551(2):111-8. PubMed ID: 25128582 [TBL] [Abstract][Full Text] [Related]
3. Proteomic insights into adventitious root formation in Larix kaempferi. Hao H; Xie B; Zhao D; Kang J; Jiang X; Gai Y J Proteomics; 2024 Sep; 307():105288. PubMed ID: 39173904 [TBL] [Abstract][Full Text] [Related]
4. Physiological evaluation of the responses of Larix olgensis families to drought stress and proteomic analysis of the superior family. Zhang L; Zhang HG; Pang QY Genet Mol Res; 2015 Dec; 14(4):15577-86. PubMed ID: 26634525 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Zhang Y; Zhang S; Han S; Li X; Qi L Plant Cell Rep; 2012 Sep; 31(9):1637-57. PubMed ID: 22622308 [TBL] [Abstract][Full Text] [Related]
6. Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch. Qin R; Zhao Q; Gu C; Wang C; Zhang L; Zhang H Sci Rep; 2023 Jan; 13(1):1354. PubMed ID: 36693928 [TBL] [Abstract][Full Text] [Related]
7. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq. Li SW; Shi RF; Leng Y PLoS One; 2015; 10(7):e0132969. PubMed ID: 26177103 [TBL] [Abstract][Full Text] [Related]
8. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability. Watanabe M; Watanabe Y; Kitaoka S; Utsugi H; Kita K; Koike T Tree Physiol; 2011 Sep; 31(9):965-75. PubMed ID: 21813517 [TBL] [Abstract][Full Text] [Related]
9. Anatomical observation and transcriptome analysis of buds reveal the association between the AP2 gene family and reproductive induction in hybrid larch (Larix kaempferi × Larix olgensis). Hao JF; Wang C; Gu CR; Xu DX; Zhang L; Zhang HG Tree Physiol; 2023 Jan; 43(1):118-129. PubMed ID: 36150026 [TBL] [Abstract][Full Text] [Related]
10. Transcriptomic Response to Nitric Oxide Treatment in Larix olgensis Henry. Hu X; Yang J; Li C Int J Mol Sci; 2015 Dec; 16(12):28582-97. PubMed ID: 26633380 [TBL] [Abstract][Full Text] [Related]
11. Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs. Zhang S; Yan S; Zhao J; Xiong H; An P; Wang J; Zhang H; Zhang L BMC Plant Biol; 2019 Jun; 19(1):247. PubMed ID: 31185902 [TBL] [Abstract][Full Text] [Related]
12. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust. Quan J; Meng S; Guo E; Zhang S; Zhao Z; Yang X BMC Genomics; 2017 Feb; 18(1):179. PubMed ID: 28209181 [TBL] [Abstract][Full Text] [Related]
13. Characterization and analysis of the transcriptome response to drought in Larix kaempferi using PacBio full-length cDNA sequencing integrated with de novo RNA-seq reads. Li W; Lee J; Yu S; Wang F; Lv W; Zhang X; Li C; Yang J Planta; 2021 Jan; 253(2):28. PubMed ID: 33423138 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive collection of genes and comparative analysis of full-length transcriptome sequences from Japanese larch (Larix kaempferi) and Kuril larch (Larix gmelinii var. japonica). Mishima K; Hirakawa H; Iki T; Fukuda Y; Hirao T; Tamura A; Takahashi M BMC Plant Biol; 2022 Oct; 22(1):470. PubMed ID: 36192701 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don. Fukuda Y; Hirao T; Mishima K; Ohira M; Hiraoka Y; Takahashi M; Watanabe A BMC Plant Biol; 2018 Sep; 18(1):201. PubMed ID: 30231856 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of larch BABY BOOM2 and its regulation of adventitious root development. Wang H; Li K; Sun X; Xie Y; Han X; Zhang S Gene; 2019 Mar; 690():90-98. PubMed ID: 30597235 [TBL] [Abstract][Full Text] [Related]
17. Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi. Wang H; Xie Y; Liu W; Tao G; Sun C; Sun X; Zhang S Gene; 2020 Oct; 758():144942. PubMed ID: 32640309 [TBL] [Abstract][Full Text] [Related]
18. Expressed sequence tag analysis of functional genes associated with adventitious rooting in Liriodendron hybrids. Zhong YD; Sun XY; Liu EY; Li YQ; Gao Z; Yu FX Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420958 [TBL] [Abstract][Full Text] [Related]
19. Pathogenicity and induced resistance in Larix kaempferi and Larix olgensis inoculated with Endoconidiophora fujiensis. Liu Y; Zhou Q; Wu D; Liu C; Wu X; Wang Z; Wang H; Lu Q Tree Physiol; 2024 Jul; 44(7):. PubMed ID: 38905265 [TBL] [Abstract][Full Text] [Related]
20. An iTRAQ-based proteomics approach to clarify the molecular physiology of somatic embryo development in Prince Rupprecht's larch (Larix principis-rupprechtii Mayr). Zhao J; Li H; Fu S; Chen B; Sun W; Zhang J; Zhang J PLoS One; 2015; 10(3):e0119987. PubMed ID: 25781987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]