BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25425065)

  • 1. Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis).
    Han H; Sun X; Xie Y; Feng J; Zhang S
    BMC Plant Biol; 2014 Nov; 14():305. PubMed ID: 25425065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, characterization and expression analysis of the BABY BOOM (BBM) gene from Larix kaempferi × L. olgensis during adventitious rooting.
    Li KP; Sun XM; Han H; Zhang SG
    Gene; 2014 Nov; 551(2):111-8. PubMed ID: 25128582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological evaluation of the responses of Larix olgensis families to drought stress and proteomic analysis of the superior family.
    Zhang L; Zhang HG; Pang QY
    Genet Mol Res; 2015 Dec; 14(4):15577-86. PubMed ID: 26634525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis).
    Zhang Y; Zhang S; Han S; Li X; Qi L
    Plant Cell Rep; 2012 Sep; 31(9):1637-57. PubMed ID: 22622308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of oxidase activity and transcriptomic changes related to cutting propagation of hybrid larch.
    Qin R; Zhao Q; Gu C; Wang C; Zhang L; Zhang H
    Sci Rep; 2023 Jan; 13(1):1354. PubMed ID: 36693928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.
    Li SW; Shi RF; Leng Y
    PLoS One; 2015; 10(7):e0132969. PubMed ID: 26177103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability.
    Watanabe M; Watanabe Y; Kitaoka S; Utsugi H; Kita K; Koike T
    Tree Physiol; 2011 Sep; 31(9):965-75. PubMed ID: 21813517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical observation and transcriptome analysis of buds reveal the association between the AP2 gene family and reproductive induction in hybrid larch (Larix kaempferi × Larix olgensis).
    Hao JF; Wang C; Gu CR; Xu DX; Zhang L; Zhang HG
    Tree Physiol; 2023 Jan; 43(1):118-129. PubMed ID: 36150026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic Response to Nitric Oxide Treatment in Larix olgensis Henry.
    Hu X; Yang J; Li C
    Int J Mol Sci; 2015 Dec; 16(12):28582-97. PubMed ID: 26633380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs.
    Zhang S; Yan S; Zhao J; Xiong H; An P; Wang J; Zhang H; Zhang L
    BMC Plant Biol; 2019 Jun; 19(1):247. PubMed ID: 31185902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust.
    Quan J; Meng S; Guo E; Zhang S; Zhao Z; Yang X
    BMC Genomics; 2017 Feb; 18(1):179. PubMed ID: 28209181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and analysis of the transcriptome response to drought in Larix kaempferi using PacBio full-length cDNA sequencing integrated with de novo RNA-seq reads.
    Li W; Lee J; Yu S; Wang F; Lv W; Zhang X; Li C; Yang J
    Planta; 2021 Jan; 253(2):28. PubMed ID: 33423138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive collection of genes and comparative analysis of full-length transcriptome sequences from Japanese larch (Larix kaempferi) and Kuril larch (Larix gmelinii var. japonica).
    Mishima K; Hirakawa H; Iki T; Fukuda Y; Hirao T; Tamura A; Takahashi M
    BMC Plant Biol; 2022 Oct; 22(1):470. PubMed ID: 36192701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome dynamics of rooting zone and aboveground parts of cuttings during adventitious root formation in Cryptomeria japonica D. Don.
    Fukuda Y; Hirao T; Mishima K; Ohira M; Hiraoka Y; Takahashi M; Watanabe A
    BMC Plant Biol; 2018 Sep; 18(1):201. PubMed ID: 30231856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of larch BABY BOOM2 and its regulation of adventitious root development.
    Wang H; Li K; Sun X; Xie Y; Han X; Zhang S
    Gene; 2019 Mar; 690():90-98. PubMed ID: 30597235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi.
    Wang H; Xie Y; Liu W; Tao G; Sun C; Sun X; Zhang S
    Gene; 2020 Oct; 758():144942. PubMed ID: 32640309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expressed sequence tag analysis of functional genes associated with adventitious rooting in Liriodendron hybrids.
    Zhong YD; Sun XY; Liu EY; Li YQ; Gao Z; Yu FX
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An iTRAQ-based proteomics approach to clarify the molecular physiology of somatic embryo development in Prince Rupprecht's larch (Larix principis-rupprechtii Mayr).
    Zhao J; Li H; Fu S; Chen B; Sun W; Zhang J; Zhang J
    PLoS One; 2015; 10(3):e0119987. PubMed ID: 25781987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Carbon storage maturity age of Larix olgenisis and L. kaempferi].
    Yin MF; Zhao L; Chen XF; Gao S; Hou CS
    Ying Yong Sheng Tai Xue Bao; 2008 Dec; 19(12):2567-71. PubMed ID: 19288704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiling during adventitious root formation in carnation stem cuttings.
    Villacorta-Martín C; Sánchez-García AB; Villanova J; Cano A; van de Rhee M; de Haan J; Acosta M; Passarinho P; Pérez-Pérez JM
    BMC Genomics; 2015 Oct; 16():789. PubMed ID: 26467528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.