These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25425124)

  • 1. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.
    Park J; Kim B; Yoo YE; Chung H; Kim W
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19499-503. PubMed ID: 25425124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor.
    Tang X; Lui YH; Merhi AR; Chen B; Ding S; Zhang B; Hu S
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44429-44440. PubMed ID: 29206439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte.
    Zhang Y; Cui X; Zu L; Cai X; Liu Y; Wang X; Lian H
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors.
    Chen L; Wu C; Qin W; Wang X; Jia C
    J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti
    Hu M; Cui C; Shi C; Wu ZS; Yang J; Cheng R; Guang T; Wang H; Lu H; Wang X
    ACS Nano; 2019 Jun; 13(6):6899-6905. PubMed ID: 31100003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance.
    Mai LQ; Minhas-Khan A; Tian X; Hercule KM; Zhao YL; Lin X; Xu X
    Nat Commun; 2013; 4():2923. PubMed ID: 24327172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confining Redox Electrolytes in Functionalized Porous Carbon with Improved Energy Density for Supercapacitors.
    Yan L; Li D; Yan T; Chen G; Shi L; An Z; Zhang D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42494-42502. PubMed ID: 30418743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7020-6. PubMed ID: 23167563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.
    Yu H; Wu J; Lin J; Fan L; Huang M; Lin Y; Li Y; Yu F; Qiu Z
    Chemphyschem; 2013 Feb; 14(2):394-9. PubMed ID: 23303585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Hierarchical Porous Carbon Nanosheets for High-Performance Supercapacitors and Redox Electrolyte Energy Storage.
    Jayaramulu K; Dubal DP; Nagar B; Ranc V; Tomanec O; Petr M; Datta KKR; Zboril R; Gómez-Romero P; Fischer RA
    Adv Mater; 2018 Apr; 30(15):e1705789. PubMed ID: 29516561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Voltage Redox Mediator of an Organic Electrolyte for Supercapacitors by Lewis Base Electrocatalysis.
    Wang ZF; Yi Z; Yu SC; Fan YF; Li J; Xie L; Zhang SC; Su F; Chen CM
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24497-24508. PubMed ID: 35580353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte.
    Chen YC; Lin LY
    J Colloid Interface Sci; 2019 Mar; 537():295-305. PubMed ID: 30448650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
    Karthika P; Rajalakshmi N; Dhathathreyan KS
    Chemphyschem; 2013 Nov; 14(16):3822-6. PubMed ID: 24155269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors.
    Park J; Kumar V; Wang X; Lee PS; Kim W
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.