BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25425279)

  • 1. Succinic semialdehyde reductase Gox1801 from Gluconobacter oxydans in comparison to other succinic semialdehyde-reducing enzymes.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2015 May; 99(9):3929-39. PubMed ID: 25425279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli.
    Saito N; Robert M; Kochi H; Matsuo G; Kakazu Y; Soga T; Tomita M
    J Biol Chem; 2009 Jun; 284(24):16442-16451. PubMed ID: 19372223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of succinic semialdehyde reductases from Geobacter: expression, purification, crystallization, preliminary functional, and crystallographic analysis.
    Zhang Y; Gao X; Zheng Y; Garavito RM
    Acta Biochim Biophys Sin (Shanghai); 2011 Dec; 43(12):996-1002. PubMed ID: 22037946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity.
    Zhang Y; Zheng Y; Qin L; Wang S; Buchko GW; Garavito RM
    Biochimie; 2014 Sep; 104():61-9. PubMed ID: 24878278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 7. Cloning and expression of succinic semialdehyde reductase from human brain. Identity with aflatoxin B1 aldehyde reductase.
    Schaller M; Schaffhauser M; Sans N; Wermuth B
    Eur J Biochem; 1999 Nov; 265(3):1056-60. PubMed ID: 10518801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The enzymes catalysing succinic semialdehyde reduction in rat brain.
    Rivett AJ; Smith IL; Tipton KF
    Biochem Pharmacol; 1981 Apr; 30(7):741-7. PubMed ID: 7247959
    [No Abstract]   [Full Text] [Related]  

  • 9. Properties of succinic semialdehyde dehydrogenase in cultured human lymphoblasts.
    Gibson KM; Sweetman L; Jansen I; Brown GK; Haan EA; Danks DM; Nyhan WL
    J Neurogenet; 1985 Apr; 2(2):111-22. PubMed ID: 4020531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and functions of two succinic-semialdehyde dehydrogenases from Pseudomonas putida.
    Sànchez M; Alvarez MA; Balaña R; Garrido-Pertierra A
    Biochim Biophys Acta; 1988 Apr; 953(3):249-57. PubMed ID: 3355840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate.
    Donnelly MI; Cooper RA
    Eur J Biochem; 1981 Jan; 113(3):555-61. PubMed ID: 7011797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of two succinic semialdehyde dehydrogenases from Klebsiella pneumoniae.
    Sanchez M; Fernández J; Martin M; Gibello A; Garrido-Pertierra A
    Biochim Biophys Acta; 1989 Mar; 990(3):225-31. PubMed ID: 2647149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of xylitol dehydrogenase and improved production of xylitol by increasing XDH activity and NADH supply in Gluconobacter oxydans.
    Zhang J; Li S; Xu H; Zhou P; Zhang L; Ouyang P
    J Agric Food Chem; 2013 Mar; 61(11):2861-7. PubMed ID: 23432201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H.
    Schweiger P; Volland S; Deppenmeier U
    J Mol Microbiol Biotechnol; 2007; 13(1-3):147-55. PubMed ID: 17693722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and mechanism of an NADPH-dependent succinic semialdehyde reductase from bovine brain.
    Cho SW; Song MS; Kim GY; Kang WD; Choi EY; Choi SY
    Eur J Biochem; 1993 Feb; 211(3):757-62. PubMed ID: 8436133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.
    Meyer M; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637.
    Lin Y; Xie Z; Zhang J; Bao W; Pan H; Li B
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):726-35. PubMed ID: 22934353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genomic search approach to identify carbonyl reductases in Gluconobacter oxydans for enantioselective reduction of ketones.
    Chen R; Liu X; Lin J; Wei D
    Biosci Biotechnol Biochem; 2014; 78(8):1350-6. PubMed ID: 25130736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of a recombinant NADP-dependent glycerol dehydrogenase from Gluconobacter oxydans and its application in the production of L-glyceraldehyde.
    Richter N; Neumann M; Liese A; Wohlgemuth R; Eggert T; Hummel W
    Chembiochem; 2009 Jul; 10(11):1888-96. PubMed ID: 19579248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.