BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 25425488)

  • 1. Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging.
    Herrling MP; Guthausen G; Wagner M; Lackner S; Horn H
    Biotechnol Bioeng; 2015 May; 112(5):1023-32. PubMed ID: 25425488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the formation of an Aureobasidium pullulans biofilm in a bead-packed reactor via flow-weighted magnetic resonance imaging.
    Metzger U; Lankes U; Hardy EH; Gordalla BC; Frimmel FH
    Biotechnol Lett; 2006 Aug; 28(16):1305-11. PubMed ID: 16802094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance microscopy analysis of advective transport in a biofilm reactor.
    Gjersing EL; Codd SL; Seymour JD; Stewart PS
    Biotechnol Bioeng; 2005 Mar; 89(7):822-34. PubMed ID: 15696510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C.
    Hoang V; Delatolla R; Abujamel T; Mottawea W; Gadbois A; Laflamme E; Stintzi A
    Water Res; 2014 Feb; 49():215-24. PubMed ID: 24333509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.
    Li C; Felz S; Wagner M; Lackner S; Horn H
    Bioresour Technol; 2016 Jan; 200():128-36. PubMed ID: 26476614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR).
    Zekker I; Rikmann E; Tenno T; Lemmiksoo V; Menert A; Loorits L; Vabamäe P; Tomingas M; Tenno T
    Biodegradation; 2012 Jul; 23(4):547-60. PubMed ID: 22311588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of MBBR carrier geometrical properties and biofilm thickness restraint on biofilm properties, effluent particle size distribution, settling velocity distribution, and settling behaviour.
    Arabgol R; Vanrolleghem PA; Delatolla R
    J Environ Sci (China); 2022 Dec; 122():138-149. PubMed ID: 35717079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling clogging and biofilm detachment in sponge carrier media.
    So M; Naka D; Goel R; Terashima M; Yasui H
    Water Sci Technol; 2014; 69(6):1298-303. PubMed ID: 24647197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the most appropriate methods for attached solids determination in moving-bed biofilm reactors.
    Fonseca DL; Bassin JP
    Bioprocess Biosyst Eng; 2019 Nov; 42(11):1867-1878. PubMed ID: 31375964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of operational conditions on biofilm specific activity of an anaerobic fluidized bed reactor.
    García-Morales JL; Romero LI; Sales D
    Water Sci Technol; 2003; 47(5):197-200. PubMed ID: 12701928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features of biomass in a hybrid MBBR reactor.
    Xiao GY; Ganczarczyk J
    Environ Technol; 2006 Mar; 27(3):289-98. PubMed ID: 16548209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic removal activity in biofilm and suspended biomass fractions of MBBR systems.
    Piculell M; Welander T; Jönsson K
    Water Sci Technol; 2014; 69(1):55-61. PubMed ID: 24434968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms.
    Herrling MP; Lackner S; Tatti O; Guthausen G; Delay M; Franzreb M; Horn H
    Sci Total Environ; 2016 Feb; 544():722-9. PubMed ID: 26674701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm loss in anaerobic immobilized fixed bed reactor system.
    Nandy T; Kaul SN
    Environ Technol; 2002 Apr; 23(4):413-9. PubMed ID: 12088368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Aug; 44(5):595-608. PubMed ID: 18618795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors.
    Gjaltema A; Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 May; 46(3):258-69. PubMed ID: 18623310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between local hydrodynamics and algal community in epilithic biofilm.
    Graba M; Sauvage S; Moulin FY; Urrea G; Sabater S; Sanchez-Pérez JM
    Water Res; 2013 May; 47(7):2153-63. PubMed ID: 23466033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design optimization of a self-cleaning moving-bed bioreactor for seawater denitrification.
    Dupla M; Comeau Y; Parent S; Villemur R; Jolicoeur M
    Water Res; 2006 Jan; 40(2):249-58. PubMed ID: 16343585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.