BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25425491)

  • 21. Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways.
    Samyn DR; Ruiz-Pávon L; Andersson MR; Popova Y; Thevelein JM; Persson BL
    Biochem J; 2012 Aug; 445(3):413-22. PubMed ID: 22587366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions.
    Navarrete C; Petrezsélyová S; Barreto L; Martínez JL; Zahrádka J; Ariño J; Sychrová H; Ramos J
    FEMS Yeast Res; 2010 Aug; 10(5):508-17. PubMed ID: 20491939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells.
    Vargas RC; García-Salcedo R; Tenreiro S; Teixeira MC; Fernandes AR; Ramos J; Sá-Correia I
    Eukaryot Cell; 2007 Feb; 6(2):134-42. PubMed ID: 17189489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae.
    Lauff DB; Santa-María GE
    FEMS Yeast Res; 2010 Aug; 10(5):497-507. PubMed ID: 20491936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Potassium transport in yeast].
    López R; Peña A
    Rev Latinoam Microbiol; 1999; 41(2):91-103. PubMed ID: 10970213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase.
    Casado C; Yenush L; Melero C; Ruiz Mdel C; Serrano R; Pérez-Valle J; Ariño J; Ramos J
    FEBS Lett; 2010 Jun; 584(11):2415-20. PubMed ID: 20412803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. pH homeostasis in yeast; the phosphate perspective.
    Eskes E; Deprez MA; Wilms T; Winderickx J
    Curr Genet; 2018 Feb; 64(1):155-161. PubMed ID: 28856407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular phosphate as a signaling molecule.
    Michigami T
    Contrib Nephrol; 2013; 180():14-24. PubMed ID: 23652547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates.
    Andreeva N; Ryazanova L; Dmitriev V; Kulakovskaya T; Kulaev I
    FEMS Yeast Res; 2013 Aug; 13(5):463-70. PubMed ID: 23663411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae.
    Barreto L; Canadell D; Petrezsélyová S; Navarrete C; Maresová L; Peréz-Valle J; Herrera R; Olier I; Giraldo J; Sychrová H; Yenush L; Ramos J; Ariño J
    Eukaryot Cell; 2011 Sep; 10(9):1241-50. PubMed ID: 21724935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein synthesis controls phosphate homeostasis.
    Pontes MH; Groisman EA
    Genes Dev; 2018 Jan; 32(1):79-92. PubMed ID: 29437726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Ppz protein phosphatases regulate Trk-independent potassium influx in yeast.
    Ruiz A; del Carmen Ruiz M; Sánchez-Garrido MA; Ariño J; Ramos J
    FEBS Lett; 2004 Dec; 578(1-2):58-62. PubMed ID: 15581616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis.
    Mottaleb SA; Rodríguez-Navarro A; Haro R
    Plant Cell Physiol; 2013 Sep; 54(9):1455-68. PubMed ID: 23825218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae.
    Vagabov VM; Trilisenko LV; Kulaev IS
    Biochemistry (Mosc); 2000 Mar; 65(3):349-54. PubMed ID: 10739478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PI(3,5)P
    Wilson ZN; Scott AL; Dowell RD; Odorizzi G
    Mol Biol Cell; 2018 Jul; 29(13):1718-1731. PubMed ID: 29791245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae.
    Mouillon JM; Persson BL
    FEMS Yeast Res; 2006 Mar; 6(2):171-6. PubMed ID: 16487340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Key Residues and Phosphate Release Routes in the Saccharomyces cerevisiae Pho84 Transceptor: THE ROLE OF TYR179 IN FUNCTIONAL REGULATION.
    Samyn DR; Van der Veken J; Van Zeebroeck G; Persson BL; Karlsson BC
    J Biol Chem; 2016 Dec; 291(51):26388-26398. PubMed ID: 27875295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pho91 Is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae.
    Hürlimann HC; Stadler-Waibel M; Werner TP; Freimoser FM
    Mol Biol Cell; 2007 Nov; 18(11):4438-45. PubMed ID: 17804816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inorganic phosphate uptake in unicellular eukaryotes.
    Dick CF; Dos-Santos AL; Meyer-Fernandes JR
    Biochim Biophys Acta; 2014 Jul; 1840(7):2123-7. PubMed ID: 24674820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.
    Kato M; Lin SJ
    DNA Repair (Amst); 2014 Nov; 23():49-58. PubMed ID: 25096760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.