These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 2542582)
1. Nucleotide sequences at recombinational junctions present in pseudorabies virus variants with an invertible L component. Lu ZQ; DeMarchi JM; Harper L; Rall GF; Ben-Porat T J Virol; 1989 Jun; 63(6):2690-8. PubMed ID: 2542582 [TBL] [Abstract][Full Text] [Related]
2. The ability of pseudorabies virus to grow in different hosts is affected by the duplication and translocation of sequences from the left end of the genome to the UL-US junction. Reilly LM; Rall G; Lomniczi B; Mettenleiter TC; Kuperschmidt S; Ben-Porat T J Virol; 1991 Nov; 65(11):5839-47. PubMed ID: 1656073 [TBL] [Abstract][Full Text] [Related]
3. Functions of the sequences at the ends of the inverted repeats of pseudorabies virus. Rall GF; Kupershmidt S; Sugg N; Veach RA; Ben-Porat T J Virol; 1992 Mar; 66(3):1506-19. PubMed ID: 1310762 [TBL] [Abstract][Full Text] [Related]
4. Evolution of pseudorabies virions containing genomes with an invertible long component after repeated passage in chicken embryo fibroblasts. Lomniczi B; Gielkens A; Csobai I; Ben-Porat T J Virol; 1987 Jun; 61(6):1772-80. PubMed ID: 3033309 [TBL] [Abstract][Full Text] [Related]
5. Cleavage of concatemeric DNA at the internal junction of "translocation" mutants of pseudorabies virus and inversion of their L component appear to be linked. Kupershmidt S; Rall GF; Lu ZQ; Ben-Porat T Virology; 1992 Mar; 187(1):223-32. PubMed ID: 1310557 [TBL] [Abstract][Full Text] [Related]
6. Structural organization of the termini of the L and S components of the genome of pseudorabies virus. DeMarchi JM; Lu ZQ; Rall G; Kupershmidt S; Ben-Porat T J Virol; 1990 Oct; 64(10):4968-77. PubMed ID: 2168980 [TBL] [Abstract][Full Text] [Related]
7. The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. Zhang G; Leader DP J Gen Virol; 1990 Oct; 71 ( Pt 10)():2433-41. PubMed ID: 2172457 [TBL] [Abstract][Full Text] [Related]
8. Low-level inversion of the L component of pseudorabies virus is not dependent on sequence homology. Rall GF; Kupershmidt S; Lu XQ; Mettenleiter TC; Ben-Porat T J Virol; 1991 Dec; 65(12):7016-9. PubMed ID: 1658393 [TBL] [Abstract][Full Text] [Related]
9. Distribution of sequences homologous to the DNA of herpes simplex virus, types 1 and 2, in the genome of pseudorabies virus. Rand TH; Ben-Porat T Intervirology; 1980; 13(1):48-53. PubMed ID: 6244240 [TBL] [Abstract][Full Text] [Related]
10. Fine mapping of the immediate-early gene of the Indiana-Funkhauser strain of pseudorabies virus. Cheung AK J Virol; 1988 Dec; 62(12):4763-6. PubMed ID: 2846885 [TBL] [Abstract][Full Text] [Related]
11. Identification of the site of recombination in the generation of the genome of DI particles of equine herpesvirus type 1. Yalamanchili RR; Raengsakulrach B; Baumann RP; O'Callaghan DJ Virology; 1990 Apr; 175(2):448-55. PubMed ID: 2158182 [TBL] [Abstract][Full Text] [Related]
12. The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. Robbins AK; Dorney DJ; Wathen MW; Whealy ME; Gold C; Watson RJ; Holland LE; Weed SD; Levine M; Glorioso JC J Virol; 1987 Sep; 61(9):2691-701. PubMed ID: 3039163 [TBL] [Abstract][Full Text] [Related]
13. Pseudorabies virus and equine herpesvirus 1 share a nonessential gene which is absent in other herpesviruses and located adjacent to a highly conserved gene cluster. Baumeister J; Klupp BG; Mettenleiter TC J Virol; 1995 Sep; 69(9):5560-7. PubMed ID: 7637001 [TBL] [Abstract][Full Text] [Related]
14. Localization of the regions of homology between the genomes of herpes simplex virus, type 1, and pseudorabies virus. Ben-Porat T; Veach RA; Ihara S Virology; 1983 May; 127(1):194-204. PubMed ID: 6305015 [TBL] [Abstract][Full Text] [Related]
15. Sequence of the genome ends and of the junction between the ends in concatemeric DNA of pseudorabies virus. Harper L; Demarchi J; Ben-Porat T J Virol; 1986 Dec; 60(3):1183-5. PubMed ID: 3023670 [TBL] [Abstract][Full Text] [Related]
16. Pseudorabies virus displays variable numbers of a repeat unit adjacent to the 3' end of the glycoprotein gII gene. Simon A; Mettenleiter TC; Rziha HJ J Gen Virol; 1989 May; 70 ( Pt 5)():1239-46. PubMed ID: 2543777 [TBL] [Abstract][Full Text] [Related]
17. Identification of the pseudorabies virus UL4 and UL5 (helicase) genes. Dean HJ; Cheung AK Virology; 1994 Aug; 202(2):962-7. PubMed ID: 8030256 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the equalization of inverted repeats and neurovirulence using a pseudorabies virus mutant strain altered at the Ul/Ir junction. Boldogköi Z; Braun A; Medveczky I; Glávits R; Gyúró B; Fodor I Virus Genes; 1998; 17(1):89-98. PubMed ID: 9778792 [TBL] [Abstract][Full Text] [Related]
19. Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Mocarski ES; Roizman B Proc Natl Acad Sci U S A; 1981 Nov; 78(11):7047-51. PubMed ID: 6273905 [TBL] [Abstract][Full Text] [Related]
20. The a sequence is dispensable for isomerization of the herpes simplex virus type 1 genome. Martin DW; Weber PC J Virol; 1996 Dec; 70(12):8801-12. PubMed ID: 8971009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]