BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 25426557)

  • 1. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells.
    Shiraishi T; Verdone JE; Huang J; Kahlert UD; Hernandez JR; Torga G; Zarif JC; Epstein T; Gatenby R; McCartney A; Elisseeff JH; Mooney SM; An SS; Pienta KJ
    Oncotarget; 2015 Jan; 6(1):130-43. PubMed ID: 25426557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells.
    Vaughan RA; Garcia-Smith R; Trujillo KA; Bisoffi M
    Prostate; 2013 Oct; 73(14):1538-46. PubMed ID: 23818177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of LDHA expression in cancer cells leads to redox-dependent alterations in cytoskeletal structure and cell migration.
    Arseneault R; Chien A; Newington JT; Rappon T; Harris R; Cumming RC
    Cancer Lett; 2013 Sep; 338(2):255-66. PubMed ID: 23583676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic glycolysis, motility, and cytoskeletal remodeling.
    Verdone JE; Zarif JC; Pienta KJ
    Cell Cycle; 2015; 14(2):169-70. PubMed ID: 25530323
    [No Abstract]   [Full Text] [Related]  

  • 7. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer.
    Isidoro A; Martínez M; Fernández PL; Ortega AD; Santamaría G; Chamorro M; Reed JC; Cuezva JM
    Biochem J; 2004 Feb; 378(Pt 1):17-20. PubMed ID: 14683524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.
    Wu M; Neilson A; Swift AL; Moran R; Tamagnine J; Parslow D; Armistead S; Lemire K; Orrell J; Teich J; Chomicz S; Ferrick DA
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C125-36. PubMed ID: 16971499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro.
    Zhong Y; Li X; Yu D; Li X; Li Y; Long Y; Yuan Y; Ji Z; Zhang M; Wen JG; Nesland JM; Suo Z
    Oncotarget; 2015 Nov; 6(35):37758-69. PubMed ID: 26413751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The α-tocopherol derivative ESeroS-GS induces cell death and inhibits cell motility of breast cancer cells through the regulation of energy metabolism.
    Zhao L; Zhao X; Zhao K; Wei P; Fang Y; Zhang F; Zhang B; Ogata K; Mori A; Wei T
    Eur J Pharmacol; 2014 Dec; 745():98-107. PubMed ID: 25446928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells.
    Jiang XP; Elliott RL; Head JF
    Breast Cancer Res Treat; 2015 Oct; 153(3):519-29. PubMed ID: 26407856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes.
    Lunetti P; Di Giacomo M; Vergara D; De Domenico S; Maffia M; Zara V; Capobianco L; Ferramosca A
    FEBS J; 2019 Feb; 286(4):688-709. PubMed ID: 30657636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.
    Yang M; Chadwick AE; Dart C; Kamishima T; Quayle JM
    PLoS One; 2017; 12(5):e0177951. PubMed ID: 28542339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metformin and prostate cancer stem cells: a novel therapeutic target.
    Mayer MJ; Klotz LH; Venkateswaran V
    Prostate Cancer Prostatic Dis; 2015 Dec; 18(4):303-9. PubMed ID: 26215782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia and the metabolic phenotype of prostate cancer cells.
    Higgins LH; Withers HG; Garbens A; Love HD; Magnoni L; Hayward SW; Moyes CD
    Biochim Biophys Acta; 2009 Dec; 1787(12):1433-43. PubMed ID: 19524545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis.
    Akakura S; Ostrakhovitch E; Sanokawa-Akakura R; Tabibzadeh S
    Biochem Biophys Res Commun; 2014 Jun; 448(4):461-6. PubMed ID: 24802411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production.
    Funes JM; Quintero M; Henderson S; Martinez D; Qureshi U; Westwood C; Clements MO; Bourboulia D; Pedley RB; Moncada S; Boshoff C
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6223-8. PubMed ID: 17384149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.
    Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA
    Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.