These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25426642)

  • 61. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology.
    Marucci L; Barberis M; Karr J; Ray O; Race PR; de Souza Andrade M; Grierson C; Hoffmann SA; Landon S; Rech E; Rees-Garbutt J; Seabrook R; Shaw W; Woods C
    Front Bioeng Biotechnol; 2020; 8():942. PubMed ID: 32850764
    [TBL] [Abstract][Full Text] [Related]  

  • 62. How People Visually Represent Discrete Constraint Problems.
    Zhu X; Nacenta MA; Akgun O; Nightingale P
    IEEE Trans Vis Comput Graph; 2020 Aug; 26(8):2603-2619. PubMed ID: 30676965
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SBOLCanvas: A Visual Editor for Genetic Designs.
    Terry L; Earl J; Thayer S; Bridge S; Myers CJ
    ACS Synth Biol; 2021 Jul; 10(7):1792-1796. PubMed ID: 34152132
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An agent-based approach for the application of nature's forms to product conceptual design.
    Parras-Burgos D; Fernández-Pacheco DG; Cavas-Martínez F; Nieto Martínez J; Cañavate FJF
    PLoS One; 2018; 13(12):e0208930. PubMed ID: 30533023
    [TBL] [Abstract][Full Text] [Related]  

  • 65. What do Constraint Programming Users Want to See? Exploring the Role of Visualisation in Profiling of Models and Search.
    Goodwin S; Mears C; Dwyer T; de la Banda MG; Tack G; Wallace M
    IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):281-290. PubMed ID: 27875144
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Data on the configuration design of internet-connected home cooling systems by engineering students.
    McComb C; Cagan J; Kotovsky K
    Data Brief; 2017 Oct; 14():773-776. PubMed ID: 28948199
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PartCrafter: find, generate and analyze BioParts.
    Scher E; Cohen SB; Sanguinetti G
    Synth Biol (Oxf); 2019; 4(1):ysz014. PubMed ID: 32995539
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Editorial: Computer-Aided Biodesign Across Scales.
    Gorochowski TE; Karr JR; Parmeggiani F; Yordanov B
    Front Bioeng Biotechnol; 2021; 9():700418. PubMed ID: 34211968
    [No Abstract]   [Full Text] [Related]  

  • 69. Synthetic biological toggle circuits that respond within seconds and teach us new biology.
    Billerbeck S
    Synth Biol (Oxf); 2021; 6(1):ysab027. PubMed ID: 34522786
    [No Abstract]   [Full Text] [Related]  

  • 70. Computational strategies for a system-level understanding of metabolism.
    Cazzaniga P; Damiani C; Besozzi D; Colombo R; Nobile MS; Gaglio D; Pescini D; Molinari S; Mauri G; Alberghina L; Vanoni M
    Metabolites; 2014 Nov; 4(4):1034-87. PubMed ID: 25427076
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of downstream genes on synthetic genetic circuits.
    Moriya T; Yamamura M; Kiga D
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S4. PubMed ID: 25521010
    [TBL] [Abstract][Full Text] [Related]  

  • 72. MEGA (Multiple Essential Genes Assembling) deletion and replacement method for genome reduction in Escherichia coli.
    Xue X; Wang T; Jiang P; Shao Y; Zhou M; Zhong L; Wu R; Zhou J; Xia H; Zhao G; Qin Z
    ACS Synth Biol; 2015 Jun; 4(6):700-6. PubMed ID: 25494410
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lightening the load in synthetic biology.
    Klavins E
    Nat Biotechnol; 2014 Dec; 32(12):1198-200. PubMed ID: 25489836
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis.
    Medema MH; Cimermancic P; Sali A; Takano E; Fischbach MA
    PLoS Comput Biol; 2014 Dec; 10(12):e1004016. PubMed ID: 25474254
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rationally engineered synthetic coculture for improved biomass and product formation.
    Santala S; Karp M; Santala V
    PLoS One; 2014; 9(12):e113786. PubMed ID: 25470793
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Catalysts from synthetic genetic polymers.
    Taylor AI; Pinheiro VB; Smola MJ; Morgunov AS; Peak-Chew S; Cozens C; Weeks KM; Herdewijn P; Holliger P
    Nature; 2015 Feb; 518(7539):427-30. PubMed ID: 25470036
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The limits of synthetic biology.
    Zakeri B; Carr PA
    Trends Biotechnol; 2015 Feb; 33(2):57-8. PubMed ID: 25466877
    [No Abstract]   [Full Text] [Related]  

  • 78. CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae.
    Jakočiūnas T; Rajkumar AS; Zhang J; Arsovska D; Rodriguez A; Jendresen CB; Skjødt ML; Nielsen AT; Borodina I; Jensen MK; Keasling JD
    ACS Synth Biol; 2015 Nov; 4(11):1226-34. PubMed ID: 25781611
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthetic protein switches: design principles and applications.
    Stein V; Alexandrov K
    Trends Biotechnol; 2015 Feb; 33(2):101-10. PubMed ID: 25535088
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthetic biology: Toehold gene switches make big footprints.
    Ausländer S; Fussenegger M
    Nature; 2014 Dec; 516(7531):333-4. PubMed ID: 25519125
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.