These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25426935)

  • 1. Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus.
    Adamson MM; Taylor JL; Heraldez D; Khorasani A; Noda A; Hernandez B; Yesavage JA
    PLoS One; 2014; 9(11):e112607. PubMed ID: 25426935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age and expertise effects in aviation decision making and flight control in a flight simulator.
    Kennedy Q; Taylor JL; Reade G; Yesavage JA
    Aviat Space Environ Med; 2010 May; 81(5):489-97. PubMed ID: 20464816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of general aviation accidents involving airline pilots and instrument-rated private pilots.
    Boyd DD; Scharf M; Cross D
    J Safety Res; 2021 Feb; 76():127-134. PubMed ID: 33653543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expertise differences in attentional strategies related to pilot decision making.
    Schriver AT; Morrow DG; Wickens CD; Talleur DA
    Hum Factors; 2008 Dec; 50(6):864-78. PubMed ID: 19292010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye position affects flight altitude in visual approach to landing independent of level of expertise of pilot.
    Jacobs DM; Morice AHP; Camachon C; Montagne G
    PLoS One; 2018; 13(5):e0197585. PubMed ID: 29795618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot age and expertise predict flight simulator performance: a 3-year longitudinal study.
    Taylor JL; Kennedy Q; Noda A; Yesavage JA
    Neurology; 2007 Feb; 68(9):648-54. PubMed ID: 17325270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual scanning strategies in the cockpit are modulated by pilots' expertise: A flight simulator study.
    Lounis C; Peysakhovich V; Causse M
    PLoS One; 2021; 16(2):e0247061. PubMed ID: 33600487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot performance, strategy, and workload while executing approaches at steep angles and with lower landing minima.
    Boehm-Davis DA; Casali JG; Kleiner BM; Lancaster JA; Saleem JJ; Wochinger K
    Hum Factors; 2007 Oct; 49(5):759-72. PubMed ID: 17915595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional magnetic resonance imaging of mental strategy in a simulated aviation performance task.
    Pérès M; Van De Moortele PF; Pierard C; Lehericy S; Satabin P; Le Bihan D; Guezennec CY
    Aviat Space Environ Med; 2000 Dec; 71(12):1218-31. PubMed ID: 11439722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flying personal planes: modeling the airport choices of general aviation pilots using stated preference methodology.
    Camasso MJ; Jagannathan R
    Hum Factors; 2001; 43(3):392-404. PubMed ID: 11866195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causes of fatal accidents for instrument-certified and non-certified private pilots.
    Shao BS; Guindani M; Boyd DD
    Accid Anal Prev; 2014 Nov; 72():370-5. PubMed ID: 25118128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Flight Decision-Making by General Aviation Pilots Operating in Areas of Extreme Thunderstorms.
    Boyd DD
    Aerosp Med Hum Perform; 2017 Dec; 88(12):1066-1072. PubMed ID: 29157334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk tolerance and pilot involvement in hazardous events and flight into adverse weather.
    Pauley K; O'Hare D; Wiggins M
    J Safety Res; 2008; 39(4):403-11. PubMed ID: 18786427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of changes in the pilot population and general aviation accidents.
    Bruckart JE
    Aviat Space Environ Med; 1992 Jan; 63(1):75-9. PubMed ID: 1550539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking for an accident: glider pilots' visual management and potentially dangerous final turns.
    Jarvis S; Harris D
    Aviat Space Environ Med; 2007 Jun; 78(6):597-600. PubMed ID: 17571661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilots' Visual Scanning Behaviors During an Instrument Landing System Approach.
    Lu Y; Zheng Y; Wang Z; Fu S
    Aerosp Med Hum Perform; 2020 Jun; 91(6):511-517. PubMed ID: 32408935
    [No Abstract]   [Full Text] [Related]  

  • 17. Eye tracking as a debriefing tool in upset prevention and recovery training (UPRT) for general aviation pilots.
    Ryffel CP; Muehlethaler CM; Huber SM; Elfering A
    Ergonomics; 2019 Feb; 62(2):319-329. PubMed ID: 30010495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of task difficulty on gaze behaviour during landing with visual flight rules in low-time pilots.
    Ayala N; Zafar A; Kearns S; Irving E; Cao S; Niechwiej-Szwedo E
    J Eye Mov Res; 2023; 16(1):. PubMed ID: 37965286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward and uncertainty favor risky decision-making in pilots: evidence from cardiovascular and oculometric measurements.
    Causse M; Baracat B; Pastor J; Dehais F
    Appl Psychophysiol Biofeedback; 2011 Dec; 36(4):231-42. PubMed ID: 21739293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method of Applying Flight Data to Evaluate Landing Operation Performance.
    Wang L; Zhang J; Dong C; Sun H; Ren Y
    Ergonomics; 2019 Feb; 62(2):171-180. PubMed ID: 30022708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.