These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 25426973)
1. Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Li Z; Yao C; Wang F; Cai Z; Wang X Nanotechnology; 2014 Dec; 25(50):504005. PubMed ID: 25426973 [TBL] [Abstract][Full Text] [Related]
2. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. Yu Y; Li J; Geng D; Wang J; Zhang L; Andrew TL; Arnold MS; Wang X ACS Nano; 2015 Jan; 9(1):564-72. PubMed ID: 25549153 [TBL] [Abstract][Full Text] [Related]
3. Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Yu Y; Yin X; Kvit A; Wang X Nano Lett; 2014 May; 14(5):2528-35. PubMed ID: 24679077 [TBL] [Abstract][Full Text] [Related]
4. 3D FTO/FTO-Nanocrystal/TiO Wang Z; Li X; Ling H; Tan CK; Yeo LP; Grimsdale AC; Tok AIY Small; 2018 May; 14(20):e1800395. PubMed ID: 29665266 [TBL] [Abstract][Full Text] [Related]
5. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803 [TBL] [Abstract][Full Text] [Related]
6. A three-dimensional hierarchical TiO2 urchin as a photoelectrochemical anode with omnidirectional anti-reflectance properties. Ren W; Zhang H; Kong D; Liu B; Yang Y; Cheng C Phys Chem Chem Phys; 2014 Nov; 16(42):22953-7. PubMed ID: 25250640 [TBL] [Abstract][Full Text] [Related]
7. A three-dimensional interconnected hierarchical FeOOH/TiO₂/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation. Li Z; Feng S; Liu S; Li X; Wang L; Lu W Nanoscale; 2015 Dec; 7(45):19178-83. PubMed ID: 26523803 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Lupinus-like TiO Zhu L; Lu H; Hao D; Wang L; Wu Z; Wang L; Li P; Ye J ACS Appl Mater Interfaces; 2017 Nov; 9(44):38537-38544. PubMed ID: 29047272 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells. Feng HL; Wu WQ; Rao HS; Wan Q; Li LB; Kuang DB; Su CY ACS Appl Mater Interfaces; 2015 Mar; 7(9):5199-205. PubMed ID: 25679232 [TBL] [Abstract][Full Text] [Related]
10. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting. Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646 [TBL] [Abstract][Full Text] [Related]
11. Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance. Huang B; Yang W; Wen Y; Shan B; Chen R ACS Appl Mater Interfaces; 2015 Jan; 7(1):422-31. PubMed ID: 25493324 [TBL] [Abstract][Full Text] [Related]
12. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. Hernández S; Cauda V; Chiodoni A; Dallorto S; Sacco A; Hidalgo D; Celasco E; Pirri CF ACS Appl Mater Interfaces; 2014 Aug; 6(15):12153-67. PubMed ID: 24983821 [TBL] [Abstract][Full Text] [Related]
13. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940 [TBL] [Abstract][Full Text] [Related]
15. A TiO Schipper DE; Zhao Z; Leitner AP; Xie L; Qin F; Alam MK; Chen S; Wang D; Ren Z; Wang Z; Bao J; Whitmire KH ACS Nano; 2017 Apr; 11(4):4051-4059. PubMed ID: 28333437 [TBL] [Abstract][Full Text] [Related]
16. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. Zhang X; Liu Y; Kang Z ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779 [TBL] [Abstract][Full Text] [Related]
17. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution. Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207 [TBL] [Abstract][Full Text] [Related]
18. ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications. Movsesyan L; Maijenburg AW; Goethals N; Sigle W; Spende A; Yang F; Kaiser B; Jaegermann W; Park SY; Mul G; Trautmann C; Toimil-Molares ME Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200568 [TBL] [Abstract][Full Text] [Related]
19. Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO Ghobadi A; Ghobadi TGU; Karadas F; Ozbay E Sci Rep; 2018 Nov; 8(1):16322. PubMed ID: 30397219 [TBL] [Abstract][Full Text] [Related]
20. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation. Gui Q; Xu Z; Zhang H; Cheng C; Zhu X; Yin M; Song Y; Lu L; Chen X; Li D ACS Appl Mater Interfaces; 2014 Oct; 6(19):17053-8. PubMed ID: 25198058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]