These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25427224)

  • 1. In situ Raman study of lithium-ion intercalation into microcrystalline graphite.
    Sole C; Drewett NE; Hardwick LJ
    Faraday Discuss; 2014; 172():223-37. PubMed ID: 25427224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses.
    Zou J; Sole C; Drewett NE; Velický M; Hardwick LJ
    J Phys Chem Lett; 2016 Nov; 7(21):4291-4296. PubMed ID: 27740774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium Insertion into Graphitic Carbon Observed via Operando Kerr-Gated Raman Spectroscopy Enables High State of Charge Diagnostics.
    Neale AR; Milan DC; Braga F; Sazanovich IV; Hardwick LJ
    ACS Energy Lett; 2022 Aug; 7(8):2611-2618. PubMed ID: 35990412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes.
    Song HY; Fukutsuka T; Miyazaki K; Abe T
    Phys Chem Chem Phys; 2016 Oct; 18(39):27486-27492. PubMed ID: 27711581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect evolution in graphene upon electrochemical lithiation.
    Jaber-Ansari L; Puntambekar KP; Tavassol H; Yildirim H; Kinaci A; Kumar R; Saldaña SJ; Gewirth AA; Greeley JP; Chan MK; Hersam MC
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17626-36. PubMed ID: 25265029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Charge Transfer upon Li- and Na-Ion Insertion in Fine-Grained Graphitic Material as Probed by NMR.
    Vyalikh A; Koroteev VO; Münchgesang W; Köhler T; Röder C; Brendler E; Okotrub AV; Bulusheva LG; Meyer DC
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9291-9300. PubMed ID: 30741532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra.
    Dimiev AM; Bachilo SM; Saito R; Tour JM
    ACS Nano; 2012 Sep; 6(9):7842-9. PubMed ID: 22880798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation.
    Bao W; Wan J; Han X; Cai X; Zhu H; Kim D; Ma D; Xu Y; Munday JN; Drew HD; Fuhrer MS; Hu L
    Nat Commun; 2014 Jul; 5():4224. PubMed ID: 24981857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes.
    Nijamudheen A; Sarbapalli D; Hui J; Rodríguez-López J; Mendoza-Cortes JL
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19393-19401. PubMed ID: 32109048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.
    Hui J; Burgess M; Zhang J; Rodríguez-López J
    ACS Nano; 2016 Apr; 10(4):4248-57. PubMed ID: 26943950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery.
    Luo L; Wu J; Xu J; Dravid VP
    ACS Nano; 2014 Nov; 8(11):11560-6. PubMed ID: 25337887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ quantification of interphasial chemistry in Li-ion battery.
    Liu T; Lin L; Bi X; Tian L; Yang K; Liu J; Li M; Chen Z; Lu J; Amine K; Xu K; Pan F
    Nat Nanotechnol; 2019 Jan; 14(1):50-56. PubMed ID: 30420761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Operando Probing of Lithium-Ion Storage on Single-Layer Graphene.
    Ni K; Wang X; Tao Z; Yang J; Shu N; Ye J; Pan F; Xie J; Tan Z; Sun X; Liu J; Qi Z; Chen Y; Wu X; Zhu Y
    Adv Mater; 2019 Jun; 31(23):e1808091. PubMed ID: 30972870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy.
    Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y
    ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying disorder in graphite-based systems by Raman spectroscopy.
    Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R
    Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Yadav R; Joshi P; Hara M; Yoshimura M
    Phys Chem Chem Phys; 2021 May; 23(20):11789-11796. PubMed ID: 33982723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (7)Li in situ 1D NMR imaging of a lithium ion battery.
    Klamor S; Zick K; Oerther T; Schappacher FM; Winter M; Brunklaus G
    Phys Chem Chem Phys; 2015 Feb; 17(6):4458-65. PubMed ID: 25578436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion.
    Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Small; 2006 May; 2(5):667-76. PubMed ID: 17193105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct real-time monitoring of stage transitions in graphite intercalation compounds.
    Dimiev AM; Ceriotti G; Behabtu N; Zakhidov D; Pasquali M; Saito R; Tour JM
    ACS Nano; 2013 Mar; 7(3):2773-80. PubMed ID: 23438444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ imaging of Li intercalation in graphite particles in an Li-ion battery.
    Takata K
    J Microsc; 2017 Jun; 266(3):249-252. PubMed ID: 28199001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.