These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 25427268)
1. Antibacterial activity of polysaccharide gel extract from fruit rinds of Durio zibethinus Murr. against oral pathogenic bacteria. Thunyakipisal P; Saladyanant T; Hongprasong N; Pongsamart S; Apinhasmit W J Investig Clin Dent; 2010 Nov; 1(2):120-5. PubMed ID: 25427268 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the penetration and passage of Streptococcus mutans and Aggregatibacter actinomycetemcomitans through membranes loaded with tetracycline, amoxicillin, and chlorhexidine: an in vitro study. Yaghobee S; Samadi N; Khorsand A; Ghahroudi AA; Kadkhodazadeh M J Basic Clin Physiol Pharmacol; 2014 Feb; 25(1):87-97. PubMed ID: 24423468 [TBL] [Abstract][Full Text] [Related]
3. Studies on the immunomodulatory effect of polysaccharide gel extracted from Durio zibethinus in Penaeus monodon shrimp against Vibrio harveyi and WSSV. Pholdaeng K; Pongsamart S Fish Shellfish Immunol; 2010 Apr; 28(4):555-61. PubMed ID: 20034573 [TBL] [Abstract][Full Text] [Related]
5. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Choi BK; Kim KY; Yoo YJ; Oh SJ; Choi JH; Kim CY Int J Antimicrob Agents; 2001 Dec; 18(6):553-7. PubMed ID: 11738343 [TBL] [Abstract][Full Text] [Related]
6. In vitro antimicrobial activity of Caesalpinia ferrea Martius fruits against oral pathogens. Sampaio FC; Pereira Mdo S; Dias CS; Costa VC; Conde NC; Buzalaf MA J Ethnopharmacol; 2009 Jul; 124(2):289-94. PubMed ID: 19397986 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial potential of Manuka honey against three oral bacteria in vitro. Schmidlin PR; English H; Duncan W; Belibasakis GN; Thurnheer T Swiss Dent J; 2014; 124(9):922-4. PubMed ID: 25253413 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. Domon H; Hiyoshi T; Maekawa T; Yonezawa D; Tamura H; Kawabata S; Yanagihara K; Kimura O; Kunitomo E; Terao Y Microbiol Immunol; 2019 Jun; 63(6):213-222. PubMed ID: 31106894 [TBL] [Abstract][Full Text] [Related]
9. An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans. Tong Z; Zhou L; Jiang W; Kuang R; Li J; Tao R; Ni L Peptides; 2011 Oct; 32(10):2021-6. PubMed ID: 21930172 [TBL] [Abstract][Full Text] [Related]
10. Prunus mume extract exhibits antimicrobial activity against pathogenic oral bacteria. Seneviratne CJ; Wong RW; Hägg U; Chen Y; Herath TD; Samaranayake PL; Kao R Int J Paediatr Dent; 2011 Jul; 21(4):299-305. PubMed ID: 21401748 [TBL] [Abstract][Full Text] [Related]
11. Composition and Antibacterial Activity of the Essential Oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack against Pathogenic Oral Bacteria. Azizan N; Mohd Said S; Zainal Abidin Z; Jantan I Molecules; 2017 Dec; 22(12):. PubMed ID: 29206142 [TBL] [Abstract][Full Text] [Related]
12. Characterization and application of a flow system for in vitro multispecies oral biofilm formation. Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431 [TBL] [Abstract][Full Text] [Related]
13. Antibacterial effect of Iranian green-tea-containing mouthrinse vs chlorhexidine 0.2%: an in vitro study. Ardakani MR; Golmohammadi S; Ayremlou S; Taheri S; Daneshvar S; Meimandi M Oral Health Prev Dent; 2014; 12(2):157-62. PubMed ID: 24624389 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial activity of various self-etching adhesive systems against oral streptococci. Esteves CM; Ota-Tsuzuki C; Reis AF; Rodrigues JA Oper Dent; 2010; 35(4):448-53. PubMed ID: 20672730 [TBL] [Abstract][Full Text] [Related]
15. A comparative evaluation of the antibacterial efficacy of honey in vitro and antiplaque efficacy in a 4-day plaque regrowth model in vivo: preliminary results. Aparna S; Srirangarajan S; Malgi V; Setlur KP; Shashidhar R; Setty S; Thakur S J Periodontol; 2012 Sep; 83(9):1116-21. PubMed ID: 22309178 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of Streptococcus mutans and Actinobacillus actinomycetemcomitans to bactericidal activity of human beta-defensin 3 in biological fluids. Maisetta G; Batoni G; Esin S; Raco G; Bottai D; Favilli F; Florio W; Campa M Antimicrob Agents Chemother; 2005 Mar; 49(3):1245-8. PubMed ID: 15728941 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms. Seneviratne CJ; Leung KC; Wong CH; Lee SF; Li X; Leung PC; Lau CB; Wat E; Jin L PLoS One; 2014; 9(8):e103234. PubMed ID: 25170958 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial activity of Bifidobacterium spp. isolated from healthy adult Koreans against cariogenic microflora. Lee DK; Park SY; An HM; Kim JR; Kim MJ; Lee SW; Cha MK; Kim SA; Chung MJ; Lee KO; Ha NJ Arch Oral Biol; 2011 Oct; 56(10):1047-54. PubMed ID: 21439550 [TBL] [Abstract][Full Text] [Related]
19. Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Chung JY; Choo JH; Lee MH; Hwang JK Phytomedicine; 2006 Mar; 13(4):261-6. PubMed ID: 16492529 [TBL] [Abstract][Full Text] [Related]
20. Essential Oil from Berries of Lebanese Juniperus excelsa M. Bieb Displays Similar Antibacterial Activity to Chlorhexidine but Higher Cytocompatibility with Human Oral Primary Cells. Azzimonti B; Cochis A; Beyrouthy ME; Iriti M; Uberti F; Sorrentino R; Landini MM; Rimondini L; Varoni EM Molecules; 2015 May; 20(5):9344-57. PubMed ID: 26007187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]