These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25427279)

  • 1. Electro-deposition and re-oxidation of carbon in carbonate-containing molten salts.
    Ijije HV; Lawrence RC; Siambun NJ; Jeong SM; Jewell DA; Hu D; Chen GZ
    Faraday Discuss; 2014; 172():105-16. PubMed ID: 25427279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electrochemical reduction processes of solid compounds in high temperature molten salts.
    Xiao W; Wang D
    Chem Soc Rev; 2014 May; 43(10):3215-28. PubMed ID: 24535552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 activation and carbonate intermediates: an operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells.
    Yu Y; Mao B; Geller A; Chang R; Gaskell K; Liu Z; Eichhorn BW
    Phys Chem Chem Phys; 2014 Jun; 16(23):11633-9. PubMed ID: 24806971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO
    Gao Y; Yang C; Zhang C; Qin Q; Chen GZ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15876-15890. PubMed ID: 28589201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting Kinetics of Molten Carbonate on Carbon.
    Dou Y; Li P; Du K; Wang P; Yin H; Wang D
    Langmuir; 2021 Sep; 37(35):10594-10601. PubMed ID: 34436905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and Thermodynamic Characterization of Enhanced Carbon Dioxide Absorption Process with Lithium Oxide-Containing Ternary Molten Carbonate.
    Deng B; Tang J; Mao X; Song Y; Zhu H; Xiao W; Wang D
    Environ Sci Technol; 2016 Oct; 50(19):10588-10595. PubMed ID: 27602783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into the carbon nucleation and growth on a nickel substrate in LiCl-Li2CO3 melts.
    Ge J; Hu L; Song Y; Jiao S
    Faraday Discuss; 2016 Aug; 190():259-68. PubMed ID: 27213189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.
    Deng B; Chen Z; Gao M; Song Y; Zheng K; Tang J; Xiao W; Mao X; Wang D
    Faraday Discuss; 2016 Aug; 190():241-58. PubMed ID: 27193751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Behavior of Al(III) and Formation of Different Phases Al-Ni Alloys Deposits from LiCl-KCl-AlCl₃ Molten Salt.
    Peng Y; Chen Z; Bai Y; Pei Q; Li W; Diao C; Li X; Li S; Dong S
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Growth of High-Strength Carbon Nanocoils in Molten Carbonates.
    Yu R; Xiang J; Du K; Deng B; Chen D; Yin H; Liu Z; Wang D
    Nano Lett; 2022 Jan; 22(1):97-104. PubMed ID: 34958590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.
    Graves C; Chatzichristodoulou C; Mogensen MB
    Faraday Discuss; 2015; 182():75-95. PubMed ID: 26284532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molten salt electro-preparation of graphitic carbons.
    Zhu F; Ge J; Gao Y; Li S; Chen Y; Tu J; Wang M; Jiao S
    Exploration (Beijing); 2023 Feb; 3(1):20210186. PubMed ID: 37323618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity.
    Gomes JF; Gasparotto LH; Tremiliosi-Filho G
    Phys Chem Chem Phys; 2013 Jul; 15(25):10339-49. PubMed ID: 23666524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO oxidation on Pt-modified Rh(111) electrodes.
    Housmans TH; Feliu JM; Gómez R; Koper MT
    Chemphyschem; 2005 Aug; 6(8):1522-9. PubMed ID: 16035023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution.
    Feng YJ; Li XY
    Water Res; 2003 May; 37(10):2399-407. PubMed ID: 12727251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable Carbons and Fuels: Recent Advances of CO
    Yu A; Ma G; Ren J; Peng P; Li FF
    ChemSusChem; 2020 Dec; 13(23):6229-6245. PubMed ID: 33030250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO(2-x): coupling between Ce(3+) and carbonate adsorbates.
    Feng ZA; Machala ML; Chueh WC
    Phys Chem Chem Phys; 2015 May; 17(18):12273-81. PubMed ID: 25891363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure and Metal-confining Carbon Nanotubes through Electrochemical Reduction of Carbon Dioxide in Ca-based Molten Salts.
    Cao J; Jing S; Wang H; Xu W; Zhang M; Xiao J; Peng Y; Ning X; Wang Z; Xiao W
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306877. PubMed ID: 37278885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.