BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25427492)

  • 1. Initial anisotropy in demineralized bovine cortical bone in compressive cyclic loading-unloading.
    Novitskaya E; Lee S; Lubarda VA; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):817-23. PubMed ID: 25427492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
    Novitskaya E; Chen PY; Lee S; Castro-Ceseña A; Hirata G; Lubarda VA; McKittrick J
    Acta Biomater; 2011 Aug; 7(8):3170-7. PubMed ID: 21571104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of young and mature bovine cortical bone.
    Manilay Z; Novitskaya E; Sadovnikov E; McKittrick J
    Acta Biomater; 2013 Feb; 9(2):5280-8. PubMed ID: 22939926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy of bovine cortical bone tissue damage properties.
    Szabó ME; Thurner PJ
    J Biomech; 2013 Jan; 46(1):2-6. PubMed ID: 23063771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nonenzymatic glycation on mechanical properties of demineralized bone matrix under compression.
    Trebacz H; Zdunek A; Dys W; Gieroba T; Wlizlo E
    J Appl Biomater Biomech; 2011; 9(2):144-9. PubMed ID: 22065392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.
    Li S; Demirci E; Silberschmidt VV
    J Mech Behav Biomed Mater; 2013 May; 21():109-20. PubMed ID: 23563047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy of demineralized bone matrix under compressive load.
    Trębacz H; Zdunek A
    Acta Bioeng Biomech; 2011; 13(1):71-6. PubMed ID: 21500766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femoral stiffness and strength critically depend on loading angle: a parametric study in a mouse-inbred strain.
    Voide R; van Lenthe GH; Müller R
    Biomed Tech (Berl); 2008 Jun; 53(3):122-9. PubMed ID: 18601620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry.
    Shahar R; Zaslansky P; Barak M; Friesem AA; Currey JD; Weiner S
    J Biomech; 2007; 40(2):252-64. PubMed ID: 16563402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of loading conditions and specimen environment on the nanomechanical response of canine cortical bone.
    Lee KL; Sobieraj M; Baldassarri M; Gupta N; Pinisetty D; Janal MN; Tovar N; Coelho PG
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4582-6. PubMed ID: 24094163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material.
    Hamed E; Novitskaya E; Li J; Chen PY; Jasiuk I; McKittrick J
    Acta Biomater; 2012 Mar; 8(3):1080-92. PubMed ID: 22115696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data.
    Grimal Q; Haupert S; Mitton D; Vastel L; Laugier P
    Med Eng Phys; 2009 Nov; 31(9):1140-7. PubMed ID: 19683957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
    Dong XN; Acuna RL; Luo Q; Wang X
    J Biomech; 2012 Nov; 45(16):2829-34. PubMed ID: 22995144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anisotropic compressive mechanical properties of the rabbit patellar tendon.
    Williams LN; Elder SH; Bouvard JL; Horstemeyer MF
    Biorheology; 2008; 45(5):577-86. PubMed ID: 19065006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis).
    Chen PY; Stokes AG; McKittrick J
    Acta Biomater; 2009 Feb; 5(2):693-706. PubMed ID: 18951859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones.
    Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H
    J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural behaviour and strain distribution of the long bones of the human lower limbs.
    Cristofolini L; Conti G; Juszczyk M; Cremonini S; Van Sint Jan S; Viceconti M
    J Biomech; 2010 Mar; 43(5):826-35. PubMed ID: 20031136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuum damage interactions between tension and compression in osteonal bone.
    Mirzaali MJ; Bürki A; Schwiedrzik J; Zysset PK; Wolfram U
    J Mech Behav Biomed Mater; 2015 Sep; 49():355-69. PubMed ID: 26093346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.