These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25427492)

  • 41. Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation.
    Ambard D; Cherblanc F
    Ann Biomed Eng; 2009 Nov; 37(11):2256-65. PubMed ID: 19609835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue properties of the human vertebral body sub-structures evaluated by means of microindentation.
    Dall'Ara E; Karl C; Mazza G; Franzoso G; Vena P; Pretterklieber M; Pahr D; Zysset P
    J Mech Behav Biomed Mater; 2013 Sep; 25():23-32. PubMed ID: 23726926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of high-energy X-ray doses on bone elastic properties and residual strains.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1774-86. PubMed ID: 22098877
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anisotropic compressive properties of passive porcine muscle tissue.
    Pietsch R; Wheatley BB; Haut Donahue TL; Gilbrech R; Prabhu R; Liao J; Williams LN
    J Biomech Eng; 2014 Nov; 136(11):. PubMed ID: 25068816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation.
    Franzoso G; Zysset PK
    J Biomech Eng; 2009 Feb; 131(2):021001. PubMed ID: 19102560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micromechanisms of Cortical Bone Failure Under Different Loading Conditions.
    Sharma NK; Sharma S; Rathi A; Kumar A; Saini KV; Sarker MD; Naghieh S; Ning L; Chen X
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32191275
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel approach to assess post-yield energy dissipation of bone in tension.
    Wang X; Nyman JS
    J Biomech; 2007; 40(3):674-7. PubMed ID: 16545820
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a micromanipulator-based loading device for mechanoregulation study of human mesenchymal stem cells in three-dimensional collagen constructs.
    Au-Yeung KL; Sze KY; Sham MH; Chan BP
    Tissue Eng Part C Methods; 2010 Feb; 16(1):93-107. PubMed ID: 19368498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anisotropy of the fatigue behaviour of cancellous bone.
    Dendorfer S; Maier HJ; Taylor D; Hammer J
    J Biomech; 2008; 41(3):636-41. PubMed ID: 18005974
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression.
    Trębacz H; Zdunek A; Cybulska J; Pieczywek P
    Australas Phys Eng Sci Med; 2013 Mar; 36(1):43-54. PubMed ID: 23393006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Insights into reference point indentation involving human cortical bone: sensitivity to tissue anisotropy and mechanical behavior.
    Granke M; Coulmier A; Uppuganti S; Gaddy JA; Does MD; Nyman JS
    J Mech Behav Biomed Mater; 2014 Sep; 37():174-85. PubMed ID: 24929851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strain distribution in the proximal human femoral metaphysis.
    Cristofolini L; Juszczyk M; Taddei F; Viceconti M
    Proc Inst Mech Eng H; 2009 Apr; 223(3):273-88. PubMed ID: 19405434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone.
    Zhai X; Nauman EA; Moryl D; Lycke R; Chen WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103597. PubMed ID: 32090926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.
    Bekker A; Cloete TJ; Chinsamy-Turan A; Nurick GN; Kok S
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():443-9. PubMed ID: 25492009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.