These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 25427795)
1. Computational design of a leucine-rich repeat protein with a predefined geometry. Rämisch S; Weininger U; Martinsson J; Akke M; André I Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795 [TBL] [Abstract][Full Text] [Related]
2. Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. Stumpp MT; Forrer P; Binz HK; Plückthun A J Mol Biol; 2003 Sep; 332(2):471-87. PubMed ID: 12948496 [TBL] [Abstract][Full Text] [Related]
3. Computational de novo design of a self-assembling peptide with predefined structure. Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins. Hindle KL; Bella J; Lovell SC Proteins; 2009 Nov; 77(2):342-58. PubMed ID: 19452560 [TBL] [Abstract][Full Text] [Related]
5. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats. Urvoas A; Guellouz A; Valerio-Lepiniec M; Graille M; Durand D; Desravines DC; van Tilbeurgh H; Desmadril M; Minard P J Mol Biol; 2010 Nov; 404(2):307-27. PubMed ID: 20887736 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the critical factors for thermodynamic stability of modular proteins using molecular modeling approach. Lee Y; Lee JJ; Kim S; Lee SC; Han J; Heu W; Park K; Kim HJ; Cheong HK; Kim D; Kim HS; Lee KW PLoS One; 2014; 9(5):e98243. PubMed ID: 24849801 [TBL] [Abstract][Full Text] [Related]
7. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. Interlandi G; Wetzel SK; Settanni G; Plückthun A; Caflisch A J Mol Biol; 2008 Jan; 375(3):837-54. PubMed ID: 18048057 [TBL] [Abstract][Full Text] [Related]
8. Artificial leucine rich repeats as new scaffolds for protein design. Baabur-Cohen H; Dayalan S; Shumacher I; Cohen-Luria R; Ashkenasy G Bioorg Med Chem Lett; 2011 Apr; 21(8):2372-5. PubMed ID: 21420858 [TBL] [Abstract][Full Text] [Related]
9. Evolution-Inspired Computational Design of Symmetric Proteins. Voet AR; Simoncini D; Tame JR; Zhang KY Methods Mol Biol; 2017; 1529():309-322. PubMed ID: 27914059 [TBL] [Abstract][Full Text] [Related]
10. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet. Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466 [TBL] [Abstract][Full Text] [Related]
11. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. Soares TA; Boschek CB; Apiyo D; Baird C; Straatsma TP J Mol Graph Model; 2010 Jun; 28(8):755-65. PubMed ID: 20185346 [TBL] [Abstract][Full Text] [Related]
12. Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. McEwan PA; Scott PG; Bishop PN; Bella J J Struct Biol; 2006 Aug; 155(2):294-305. PubMed ID: 16884925 [TBL] [Abstract][Full Text] [Related]
13. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123 [TBL] [Abstract][Full Text] [Related]
14. A general computational approach for repeat protein design. Parmeggiani F; Huang PS; Vorobiev S; Xiao R; Park K; Caprari S; Su M; Seetharaman J; Mao L; Janjua H; Montelione GT; Hunt J; Baker D J Mol Biol; 2015 Jan; 427(2):563-75. PubMed ID: 25451037 [TBL] [Abstract][Full Text] [Related]
15. De novo design of self-assembling helical protein filaments. Shen H; Fallas JA; Lynch E; Sheffler W; Parry B; Jannetty N; Decarreau J; Wagenbach M; Vicente JJ; Chen J; Wang L; Dowling Q; Oberdorfer G; Stewart L; Wordeman L; De Yoreo J; Jacobs-Wagner C; Kollman J; Baker D Science; 2018 Nov; 362(6415):705-709. PubMed ID: 30409885 [TBL] [Abstract][Full Text] [Related]
16. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Kajava AV; Vassart G; Wodak SJ Structure; 1995 Sep; 3(9):867-77. PubMed ID: 8535781 [TBL] [Abstract][Full Text] [Related]
18. Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution. Dantas G; Watters AL; Lunde BM; Eletr ZM; Isern NG; Roseman T; Lipfert J; Doniach S; Tompa M; Kuhlman B; Stoddard BL; Varani G; Baker D J Mol Biol; 2006 Oct; 362(5):1004-24. PubMed ID: 16949611 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Kobe B; Deisenhofer J Nature; 1993 Dec 23-30; 366(6457):751-6. PubMed ID: 8264799 [TBL] [Abstract][Full Text] [Related]
20. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study. Klepeis JL; Wei Y; Hecht MH; Floudas CA Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]