These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25427951)

  • 41. Unambiguous evidence of brilliant iridescent feather color from hollow melanosomes in an Early Cretaceous bird.
    Pan Y; Li Z; Wang M; Zhao T; Wang X; Zheng X
    Natl Sci Rev; 2022 Feb; 9(2):nwab227. PubMed ID: 35145706
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kingfisher feathers--colouration by pigments, spongy nanostructures and thin films.
    Stavenga DG; Tinbergen J; Leertouwer HL; Wilts BD
    J Exp Biol; 2011 Dec; 214(Pt 23):3960-7. PubMed ID: 22071186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers.
    Alibardi L; Knapp LW; Sawyer RH
    J Submicrosc Cytol Pathol; 2006; 38(2-3):175-92. PubMed ID: 17784647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.
    Pan Y; Zheng W; Moyer AE; O'Connor JK; Wang M; Zheng X; Wang X; Schroeter ER; Zhou Z; Schweitzer MH
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7900-E7907. PubMed ID: 27872291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coloration strategies in peacock feathers.
    Zi J; Yu X; Li Y; Hu X; Xu C; Wang X; Liu X; Fu R
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12576-8. PubMed ID: 14557541
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural coloured feathers of mallards act by simple multilayer photonics.
    Stavenga DG; van der Kooi CJ; Wilts BD
    J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28768883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin.
    Maia R; Caetano JV; Báo SN; Macedo RH
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S203-11. PubMed ID: 19141431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Convergent evolution of super black plumage near bright color in 15 bird families.
    McCoy DE; Prum RO
    J Exp Biol; 2019 Sep; 222(Pt 18):. PubMed ID: 31558610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird, Gansus yumenensis.
    Barden HE; Wogelius RA; Li D; Manning PL; Edwards NP; van Dongen BE
    PLoS One; 2011; 6(10):e25494. PubMed ID: 22022404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural absorption by barbule microstructures of super black bird of paradise feathers.
    McCoy DE; Feo T; Harvey TA; Prum RO
    Nat Commun; 2018 Jan; 9(1):1. PubMed ID: 29317637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.
    Okazaki T
    Zoolog Sci; 2018 Feb; 35(1):86-91. PubMed ID: 29417896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Melanosomes or microbes: testing an alternative hypothesis for the origin of microbodies in fossil feathers.
    Moyer AE; Zheng W; Johnson EA; Lamanna MC; Li DQ; Lacovara KJ; Schweitzer MH
    Sci Rep; 2014 Mar; 4():4233. PubMed ID: 24595214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scanning electron microscopy of the iridescent feather architectonics of the white throated needletail (Hirundapus caudacutus, Apodidae, Aves).
    Chernova OF; Fadeeva EO; Ilyashenko VY
    Dokl Biol Sci; 2015; 464():239-43. PubMed ID: 26530066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary shifts in the melanin-based color system of birds.
    Eliason CM; Shawkey MD; Clarke JA
    Evolution; 2016 Feb; 70(2):445-55. PubMed ID: 26767728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fine structure of juvenile feathers of the zebrafinch in relation to the evolution and diversification of pennaceous feathers.
    Alibardi L
    J Submicrosc Cytol Pathol; 2005 Nov; 37(3-4):323-43. PubMed ID: 16612976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The microstructure of white feathers predicts their visible and near-infrared reflectance properties.
    Stuart-Fox D; Newton E; Mulder RA; D'Alba L; Shawkey MD; Igic B
    PLoS One; 2018; 13(7):e0199129. PubMed ID: 29975724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wrinkle nanostructures generate a novel form of blue structural color in great argus flight feathers.
    Eliason CM; Clarke JA; Kane SA
    iScience; 2023 Jan; 26(1):105912. PubMed ID: 36691618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectariniidae).
    Shawkey MD; Igic B; Rogalla S; Goldenberg J; Clusella-Trullas S; D'Alba L
    Naturwissenschaften; 2017 Sep; 104(9-10):78. PubMed ID: 28871351
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural origin of the brown color of barbules in male peacock tail feathers.
    Li Y; Lu Z; Yin H; Yu X; Liu X; Zi J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):010902. PubMed ID: 16089929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of colour-producing beta-keratin nanostructures in avian feather barbs.
    Prum RO; Dufresne ER; Quinn T; Waters K
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S253-65. PubMed ID: 19336345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.