These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25428003)

  • 1. Modeling and optimization of cryopreservation.
    D Benson J
    Methods Mol Biol; 2015; 1257():83-120. PubMed ID: 25428003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Modeling and Optimization of Cryopreservation in Single Cells.
    Benson JD
    Methods Mol Biol; 2021; 2180():129-172. PubMed ID: 32797410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The determination of membrane permeability coefficients of canine pancreatic islet cells and their application to islet cryopreservation.
    Liu J; Zieger MA; Lakey JR; Woods EJ; Critser JK
    Cryobiology; 1997 Aug; 35(1):1-13. PubMed ID: 9245505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of EIF dynamics on the cryopreservation process of a size distributed cell population.
    Fadda S; Briesen H; Cincotti A
    Cryobiology; 2011 Jun; 62(3):218-31. PubMed ID: 21463613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of cryopreservation of engineered tissues with one-dimensional geometry.
    Cui ZF; Dykhuizen RC; Nerem RM; Sembanis A
    Biotechnol Prog; 2002; 18(2):354-61. PubMed ID: 11934307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model.
    Liu J; Mullen S; Meng Q; Critser J; Dinnyes A
    Cryobiology; 2009 Oct; 59(2):127-34. PubMed ID: 19527701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of the co-transport of cryoprotective agents in a porous medium as a model tissue.
    Xu X; Cui ZF
    Biotechnol Prog; 2003; 19(3):972-81. PubMed ID: 12790664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cryobiological responses in TF-1 cells using interrupted freezing procedures.
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Cryobiology; 2010 Apr; 60(2):106-16. PubMed ID: 19766619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).
    Xu Y; Zhao G; Zhou X; Ding W; Shu Z; Gao D
    Cryobiology; 2014 Apr; 68(2):294-302. PubMed ID: 24582893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical model of intracellular devitrification.
    Karlsson JO
    Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of coupling water and cryoprotectant transport across cell membranes and applications to cryopreservation.
    Weng L; Li W; Chen C; Zuo J
    J Phys Chem B; 2011 Dec; 115(49):14721-31. PubMed ID: 22039989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of osmotic water flow across cell membranes in non-ideal solutions during freezing and thawing.
    Weng L; Li W; Zuo J
    Cryobiology; 2010 Oct; 61(2):194-203. PubMed ID: 20654609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2007; 368():39-57. PubMed ID: 18080461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing response and optimal cooling rates for cryopreserving sperm cells of striped bass, Morone saxatilis.
    Thirumala S; Campbell WT; Vicknair MR; Tiersch TR; Devireddy RV
    Theriogenology; 2006 Sep; 66(4):964-73. PubMed ID: 16574210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability.
    Raju R; Bryant SJ; Wilkinson BL; Bryant G
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129749. PubMed ID: 32980500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method of designing pre-freezing protocol in cryopreservation of biological materials.
    Shirakashi R; Tanasawa I
    Ann N Y Acad Sci; 1998 Sep; 858():175-82. PubMed ID: 9917817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the biophysical properties of porcine adipose-derived stem cells by a microperfusion system.
    Wang J; Zhao G; Zhang P; Wang Z; Zhang Y; Gao D; Zhou P; Cao Y
    Cryobiology; 2014 Dec; 69(3):442-50. PubMed ID: 25445459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport phenomena during freezing of adipose tissue derived adult stem cells.
    Thirumala S; Gimble JM; Devireddy RV
    Biotechnol Bioeng; 2005 Nov; 92(3):372-83. PubMed ID: 16155954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY; Chen MC; Lee PT; Lin TT
    Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.