BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25428039)

  • 1. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior.
    Veleirinho B; Berti FV; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):37-46. PubMed ID: 25428039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y
    J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.
    Surucu S; Turkoglu Sasmazel H
    J Biomater Sci Polym Ed; 2016; 27(2):111-32. PubMed ID: 26494511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability.
    Gao L; Gan H; Meng Z; Gu R; Wu Z; Zhang L; Zhu X; Sun W; Li J; Zheng Y; Dou G
    Colloids Surf B Biointerfaces; 2014 May; 117():398-405. PubMed ID: 24675278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties.
    Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process.
    Arslan A; Simşek M; Aldemir SD; Kazaroğlu NM; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2014 Jul; 25(10):999-1012. PubMed ID: 24842308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin.
    Berillo D; Elowsson L; Kirsebom H
    Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds.
    Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL
    Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds.
    Jing X; Mi HY; Peng J; Peng XF; Turng LS
    Carbohydr Polym; 2015 Mar; 117():941-949. PubMed ID: 25498720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.
    Surucu S; Turkoglu Sasmazel H
    Int J Biol Macromol; 2016 Nov; 92():321-328. PubMed ID: 27387013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of gold-nanoparticles/chitosan film: a scaffold for L929-fibroblasts.
    Türk M; Tamer U; Alver E; Çiftçi H; Metin AÜ; Karahan S
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):395-401. PubMed ID: 23330692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats.
    Lowery JL; Datta N; Rutledge GC
    Biomaterials; 2010 Jan; 31(3):491-504. PubMed ID: 19822363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofibrous chitosan-polyethylene oxide engineered scaffolds: a comparative study between simulated structural characteristics and cells viability.
    Kazemi Pilehrood M; Dilamian M; Mirian M; Sadeghi-Aliabadi H; Maleknia L; Nousiainen P; Harlin A
    Biomed Res Int; 2014; 2014():438065. PubMed ID: 24995296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast biocompatibility of novel chitosan crosslinker, hexamethylene-1,6-diaminocarboxysulfonate.
    Beringer LT; Kiechel MA; Komiya Y; Donius AE; Habas R; Wegst UG; Schauer CL
    J Biomed Mater Res A; 2015 Sep; 103(9):3026-33. PubMed ID: 25689675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies.
    Silva SS; Luna SM; Gomes ME; Benesch J; Pashkuleva I; Mano JF; Reis RL
    Macromol Biosci; 2008 Jun; 8(6):568-76. PubMed ID: 18350539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved cellular response on multiwalled carbon nanotube-incorporated electrospun polyvinyl alcohol/chitosan nanofibrous scaffolds.
    Liao H; Qi R; Shen M; Cao X; Guo R; Zhang Y; Shi X
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):528-35. PubMed ID: 21353768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning.
    Wan Y; Cao X; Zhang S; Wang S; Wu Q
    Acta Biomater; 2008 Jul; 4(4):876-86. PubMed ID: 18356124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.