These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 25428088)
1. Bone fracture characterization using the end notched flexure test. Dourado N; Pereira FA; de Moura MF; Morais JJ; Dias MI Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):405-10. PubMed ID: 25428088 [TBL] [Abstract][Full Text] [Related]
2. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test. Silva FGA; de Moura MFSF; Dourado N; Xavier J; Pereira FAM; Morais JJL; Dias MIR; Lourenço PJ; Judas FM Med Biol Eng Comput; 2017 Aug; 55(8):1249-1260. PubMed ID: 27783311 [TBL] [Abstract][Full Text] [Related]
3. Bone fracture characterization under mixed-mode I+II loading using the single leg bending test. Pereira FA; de Moura MF; Dourado N; Morais JJ; Dias MI Biomech Model Mechanobiol; 2014 Nov; 13(6):1331-9. PubMed ID: 24715503 [TBL] [Abstract][Full Text] [Related]
4. The double cantilever beam test applied to mode I fracture characterization of cortical bone tissue. Morais JJ; de Moura MF; Pereira FA; Xavier J; Dourado N; Dias MI; Azevedo JM J Mech Behav Biomed Mater; 2010 Aug; 3(6):446-53. PubMed ID: 20621027 [TBL] [Abstract][Full Text] [Related]
5. Fracture characterization of bone under mode II loading using the end loaded split test. Pereira FA; Morais JJ; Dourado N; de Moura MF; Dias MI J Mech Behav Biomed Mater; 2011 Nov; 4(8):1764-73. PubMed ID: 22098876 [TBL] [Abstract][Full Text] [Related]
6. Fracture Characterization of Human Cortical Bone Under Mode I Loading. Silva F; de Moura M; Dourado N; Xavier J; Pereira F; Morais J; Dias M; Lourenço P; Judas F J Biomech Eng; 2015 Dec; 137(12):121004. PubMed ID: 26502314 [TBL] [Abstract][Full Text] [Related]
7. Mixed-mode I+II fracture characterization of human cortical bone using the Single Leg Bending test. Silva FG; de Moura MF; Dourado N; Xavier J; Pereira FA; Morais JJ; Dias MI J Mech Behav Biomed Mater; 2016 Feb; 54():72-81. PubMed ID: 26433088 [TBL] [Abstract][Full Text] [Related]
8. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method. Tomar V J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling. Demirtas A; Curran E; Ural A Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083 [TBL] [Abstract][Full Text] [Related]
10. Fracture toughness of manatee rib and bovine femur using a chevron-notched beam test. Yan J; Clifton KB; Mecholsky JJ; Reep RL J Biomech; 2006; 39(6):1066-74. PubMed ID: 16549096 [TBL] [Abstract][Full Text] [Related]
11. Cohesive finite element modeling of age-related toughness loss in human cortical bone. Ural A; Vashishth D J Biomech; 2006; 39(16):2974-82. PubMed ID: 16375909 [TBL] [Abstract][Full Text] [Related]
12. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Yang QD; Cox BN; Nalla RK; Ritchie RO Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757 [TBL] [Abstract][Full Text] [Related]
13. Cortical bone fracture analysis using XFEM - case study. Idkaidek A; Jasiuk I Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27287280 [TBL] [Abstract][Full Text] [Related]
14. Analysis of miniature single- and double-notch bending specimens for estimating the fracture toughness of cortical bone. McCormack J; Wang XS; Stover SM; Gibeling JC; Fyhrie DP J Biomed Mater Res A; 2012 Apr; 100(4):1080-8. PubMed ID: 22323431 [TBL] [Abstract][Full Text] [Related]
15. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel. Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898 [TBL] [Abstract][Full Text] [Related]
16. The fracture mechanics of fatigue crack propagation in compact bone. Wright TM; Hayes WC J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925 [TBL] [Abstract][Full Text] [Related]
17. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach. Harrison NM; McDonnell P; Mullins L; Wilson N; O'Mahoney D; McHugh PE Biomech Model Mechanobiol; 2013 Apr; 12(2):225-41. PubMed ID: 22527367 [TBL] [Abstract][Full Text] [Related]
18. A methodology for the investigation of toughness and crack propagation in mouse bone. Carriero A; Zimmermann EA; Shefelbine SJ; Ritchie RO J Mech Behav Biomed Mater; 2014 Nov; 39():38-47. PubMed ID: 25084121 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM). Feerick EM; Liu XC; McGarry P J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165 [TBL] [Abstract][Full Text] [Related]
20. [Fracture toughness of cortical bone in tension, shear, and tear--a comparison of longitudinal and transverse fracture]. Feng Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):199-204. PubMed ID: 11326832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]