These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25428095)

  • 1. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds.
    Farhangdoust S; Zamanian A; Yasaei M; Khorami M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):453-60. PubMed ID: 25428095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering.
    Deville S; Saiz E; Tomsia AP
    Biomaterials; 2006 Nov; 27(32):5480-9. PubMed ID: 16857254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method.
    Macchetta A; Turner IG; Bowen CR
    Acta Biomater; 2009 May; 5(4):1319-27. PubMed ID: 19112055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    Biomed Mater; 2008 Jun; 3(2):025005. PubMed ID: 18458369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior.
    Fu Q; Rahaman MN; Dogan F; Bal BS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):514-22. PubMed ID: 18338786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of high strength macroporous hydroxyapatite scaffold.
    Swain SK; Bhattacharyya S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):67-71. PubMed ID: 25428044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional porous bioscaffolds for bone tissue regeneration: fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study.
    Mallick KK; Winnett J; van Grunsven W; Lapworth J; Reilly GC
    J Biomed Mater Res A; 2012 Nov; 100(11):2948-59. PubMed ID: 22696264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds.
    Arabi N; Zamanian A
    Biotechnol Appl Biochem; 2013; 60(6):573-9. PubMed ID: 23614452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering.
    Guda T; Oh S; Appleford MR; Ong JL
    Int J Oral Maxillofac Implants; 2012; 27(2):288-94. PubMed ID: 22442766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting.
    Yin TJ; Jeyapalina S; Naleway SE
    J Mech Behav Biomed Mater; 2021 Nov; 123():104717. PubMed ID: 34352488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.
    Cordell JM; Vogl ML; Wagoner Johnson AJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):560-70. PubMed ID: 19627863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic freeze casting for the production of porous titanium (Ti) scaffolds.
    Jung HD; Yook SW; Jang TS; Li Y; Kim HE; Koh YH
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):59-63. PubMed ID: 25428042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
    Converse GL; Conrad TL; Merrill CH; Roeder RK
    Acta Biomater; 2010 Mar; 6(3):856-63. PubMed ID: 19665061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.
    Rouholamin D; van Grunsven W; Reilly GC; Smith PJ
    Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.