These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25428108)
1. Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum. Benbarek S; Bachir Bouiadjra BA; El Mokhtar BM; Achour T; Serier B Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):543-9. PubMed ID: 25428108 [TBL] [Abstract][Full Text] [Related]
2. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading. Hertzler J; Miller MA; Mann KA J Orthop Res; 2002 Jul; 20(4):676-82. PubMed ID: 12168654 [TBL] [Abstract][Full Text] [Related]
3. An analysis of crack propagation paths at implant/bone-cement interfaces. McCormack BA; Prendergast PJ J Biomech Eng; 1996 Nov; 118(4):579-85. PubMed ID: 8950663 [TBL] [Abstract][Full Text] [Related]
4. Shape optimization of metal backing for cemented acetabular cup. Hedia HS; Abdel-Shafi AA; Fouda N Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841 [TBL] [Abstract][Full Text] [Related]
5. Computational assessment of the effect of polyethylene wear rate, mantle thickness, and porosity on the mechanical failure of the acetabular cement mantle. Coultrup OJ; Hunt C; Wroblewski BM; Taylor M J Orthop Res; 2010 May; 28(5):565-70. PubMed ID: 19950359 [TBL] [Abstract][Full Text] [Related]
6. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel. Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898 [TBL] [Abstract][Full Text] [Related]
7. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test. Heuer DA; Mann KA J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387 [TBL] [Abstract][Full Text] [Related]
8. Fixation of the acetabular cup in cemented total hip replacement: improving the anchorage hole profile using finite element method. Mootanah R; Ingle P; Dowell J; Cheah K; Shelton JC Technol Health Care; 2000; 8(6):343-55. PubMed ID: 11258580 [TBL] [Abstract][Full Text] [Related]
9. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions. Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029 [TBL] [Abstract][Full Text] [Related]
10. Crack propagation directions in unfilled resins. Baran G; Sadeghipour K; Jayaraman S; Silage D; Paul D; Boberick K J Dent Res; 1998 Nov; 77(11):1864-73. PubMed ID: 9823724 [TBL] [Abstract][Full Text] [Related]
11. Stiffness optimisation of cement and stem materials in total hip replacement. Hedia HS Biomed Mater Eng; 2001; 11(1):1-10. PubMed ID: 11281574 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Various Criteria Determining the Direction of Crack Propagation Using the UDMGINI User Procedure Implemented in Abaqus. Gontarz J; Podgórski J Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207273 [TBL] [Abstract][Full Text] [Related]
13. Effect of Yield Strength Distribution Welded Joint on Crack Propagation Path and Crack Mechanical Tip Field. Bi Y; Yuan X; Lv J; Bashir R; Wang S; Xue H Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501037 [TBL] [Abstract][Full Text] [Related]
14. Finite Element Simulation of a Crack Growth in the Presence of a Hole in the Vicinity of the Crack Trajectory. Alshoaibi AM; Fageehi YA Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009512 [TBL] [Abstract][Full Text] [Related]
15. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading. Wang G; Zhang S; Bian C; Kong H J Mech Behav Biomed Mater; 2014 Nov; 39():119-28. PubMed ID: 25123435 [TBL] [Abstract][Full Text] [Related]
16. [Biomechanical characteristics of hip prosthesis in hip arthroplasty treating elderly patients with Evans I-III intertrochanteric fracture of femur]. Liu WG; Liu SH; Yin QF; Xiao SP; Wang SJ Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2013 Feb; 35(1):108-11. PubMed ID: 23472858 [TBL] [Abstract][Full Text] [Related]
17. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model. Gustafsson A; Wallin M; Khayyeri H; Isaksson H Biomech Model Mechanobiol; 2019 Aug; 18(4):1247-1261. PubMed ID: 30963356 [TBL] [Abstract][Full Text] [Related]
18. Why would cement porosity reduction be clinically irrelevant, while experimental data show the contrary. Janssen D; Stolk J; Verdonschot N J Orthop Res; 2005 Jul; 23(4):691-7. PubMed ID: 16022978 [TBL] [Abstract][Full Text] [Related]
19. Threshold intensity factors as lower boundaries for crack propagation in ceramics. Marx R; Jungwirth F; Walter PO Biomed Eng Online; 2004 Nov; 3(1):41. PubMed ID: 15548323 [TBL] [Abstract][Full Text] [Related]
20. The effect of stem geometry on stresses within the distal cement mantle in total hip replacement. Schmölz W; Gordon DR; Shields AJ; Kirkwood D; Grigoris P Technol Health Care; 2000; 8(1):67-73. PubMed ID: 10942992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]