These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25428108)
41. Comparison of failure characteristics of a range of cancellous bone-bone cement composites. Lucksanasombool P; Higgs WA; Ignat M; Higgs RJ; Swain MV J Biomed Mater Res A; 2003 Jan; 64(1):93-104. PubMed ID: 12483701 [TBL] [Abstract][Full Text] [Related]
42. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses. Ramos A; Simões JA J Biomech; 2009 Nov; 42(15):2602-10. PubMed ID: 19660758 [TBL] [Abstract][Full Text] [Related]
43. Computational modelling of bone cement polymerization: temperature and residual stresses. Pérez MA; Nuño N; Madrala A; García-Aznar JM; Doblaré M Comput Biol Med; 2009 Sep; 39(9):751-9. PubMed ID: 19615676 [TBL] [Abstract][Full Text] [Related]
44. A methodology for the investigation of toughness and crack propagation in mouse bone. Carriero A; Zimmermann EA; Shefelbine SJ; Ritchie RO J Mech Behav Biomed Mater; 2014 Nov; 39():38-47. PubMed ID: 25084121 [TBL] [Abstract][Full Text] [Related]
45. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components]. Kovanda M; Havlícek V; Hudec J Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130 [TBL] [Abstract][Full Text] [Related]
46. The fracture mechanics of fatigue crack propagation in compact bone. Wright TM; Hayes WC J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925 [TBL] [Abstract][Full Text] [Related]
47. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material. Alshoaibi AM; Fageehi YA Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568 [TBL] [Abstract][Full Text] [Related]
48. Augmentation of posterior wall acetabular fracture fixation using calcium-phosphate cement: a biomechanical analysis. Olson SA; Kadrmas MW; Hernandez JD; Glisson RR; West JL J Orthop Trauma; 2007 Oct; 21(9):608-16. PubMed ID: 17921835 [TBL] [Abstract][Full Text] [Related]
49. Predicting Stress Intensity Factor for Aluminum 6062 T6 Material in L-Shaped Lower Control Arm (LCA) Design Using Extended Finite Element Analysis. El Fakkoussi S; Vlase S; Marin M; Koubaiti O; Elkhalfi A; Moustabchir H Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204059 [TBL] [Abstract][Full Text] [Related]
50. The effect of moisture absorption on the fatigue crack propagation resistance of acrylic bone cement. Schmitt S; Krzypow DJ; Rimnac CM Biomed Tech (Berl); 2004 Mar; 49(3):61-5. PubMed ID: 15106900 [TBL] [Abstract][Full Text] [Related]
51. Fracture tolerance of reaction wood (yew and spruce wood in the TR crack propagation system). Stanzl-Tschegg SE; Keunecke D; Tschegg EK J Mech Behav Biomed Mater; 2011 Jul; 4(5):688-98. PubMed ID: 21565717 [TBL] [Abstract][Full Text] [Related]
52. Global bifurcation criterion for oscillatory crack path instability. Pham VB; Bahr HA; Bahr U; Balke H; Weiss HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066114. PubMed ID: 18643343 [TBL] [Abstract][Full Text] [Related]
53. A computational framework for crack propagation in spatially heterogeneous materials. Lewandowski K; Kaczmarczyk Ł; Athanasiadis I; Marshall JF; Pearce CJ Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20200291. PubMed ID: 34148414 [TBL] [Abstract][Full Text] [Related]
54. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth. Alshoaibi AM; Bashiri AH Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363222 [TBL] [Abstract][Full Text] [Related]
55. Adaptive Finite Element Model for Simulating Crack Growth in the Presence of Holes. Alshoaibi AM; Fageehi YA Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576448 [TBL] [Abstract][Full Text] [Related]
56. Numerical Fatigue Crack Growth on Compact Tension Specimens under Mode I and Mixed-Mode (I+II) Loading. Martins RF; Xavier J; Caldeira J Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336311 [TBL] [Abstract][Full Text] [Related]
57. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires. Toribio J; Matos JC; González B; Escuadra J Materials (Basel); 2015 Nov; 8(11):7589-7597. PubMed ID: 28793661 [TBL] [Abstract][Full Text] [Related]
58. Investigation of Crack Propagation Behaviour in Thin-Rim Gears: Experimental Tests and Numerical Simulations. He H; Mura A; Zhang T; Liu H; Xu W Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297233 [TBL] [Abstract][Full Text] [Related]
59. Fracture of porcine aorta-Part 1: symconCT fracture testing and DIC. Alloisio M; Chatziefraimidou M; Roy J; Christian Gasser T Acta Biomater; 2023 Sep; 167():147-157. PubMed ID: 37355178 [TBL] [Abstract][Full Text] [Related]
60. Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading. Wang Y; Wang Q; Chen H; Sun J; He L Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]