BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 25428439)

  • 1. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.
    Zhu T; Chen R; Xia N; Li X; He X; Zhao W; Carr T
    Environ Technol; 2015; 36(9-12):1405-13. PubMed ID: 25428439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toluene removal by sequential adsorption-plasma catalytic process: Effects of Ag and Mn impregnation sequence on Ag-Mn/γ-Al2O3.
    Qin C; Huang X; Dang X; Huang J; Teng J; Kang Z
    Chemosphere; 2016 Nov; 162():125-30. PubMed ID: 27494312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe
    Wang R; Ren J; Wu J; Wu L
    RSC Adv; 2020 Nov; 10(68):41511-41522. PubMed ID: 35516553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effluents from MBT plants: plasma techniques for the treatment of VOCs.
    Ragazzi M; Tosi P; Rada EC; Torretta V; Schiavon M
    Waste Manag; 2014 Nov; 34(11):2400-6. PubMed ID: 25168185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics and mechanism of toluene removal from gas by novelty array double dielectric barrier discharge combined with TiO
    Zhou W; Guan Z; Zhao M; Li J
    Chemosphere; 2019 Jul; 226():766-773. PubMed ID: 30965247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition of gaseous toluene using a continuous flow discharge plasma reactor with new configurations.
    Liu J; Wang J; Cao X; Zhang R; Hou H
    Environ Technol; 2015; 36(24):3084-93. PubMed ID: 26077374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor.
    Mustafa MF; Fu X; Liu Y; Abbas Y; Wang H; Lu W
    J Hazard Mater; 2018 Apr; 347():317-324. PubMed ID: 29331811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Plasma Catalytic Oxidation of Toluene Using Monolith CuO Foam as a Catalyst in a Wedged High Voltage Electrode Dielectric Barrier Discharge Reactor: Influence of Reaction Parameters and Byproduct Control.
    Li J; Zhang H; Ying D; Wang Y; Sun T; Jia J
    Int J Environ Res Public Health; 2019 Feb; 16(5):. PubMed ID: 30818848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of catalyst for oxidation removal of toluene.
    Zhu T; Li J; Liang W; Jin Y
    J Hazard Mater; 2009 Jun; 165(1-3):1258-60. PubMed ID: 19124193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-dot doping for enhanced catalytic performance of TiO
    Liu J; Ji Y; Zhu S; Guo T; Xu L; Dong J; Cheng P
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2480-2492. PubMed ID: 34374012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete oxidation of volatile organic compounds over Ce/Cu/gamma-AL2O3 catalyst.
    Kim SC; Shim WG
    Environ Technol; 2008 May; 29(5):535-42. PubMed ID: 18661737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.
    Liang WJ; Ma L; Liu H; Li J
    Chemosphere; 2013 Aug; 92(10):1390-5. PubMed ID: 23773445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration.
    Liu R; Song H; Li B; Li X; Zhu T
    Chemosphere; 2021 Jan; 263():127893. PubMed ID: 32835971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor.
    Yao S; Chen Z; Xie H; Yuan Y; Zhou R; Xu B; Chen J; Wu X; Wu Z; Jiang B; Tang X; Lu H; Nozaki T; Kim HH
    Chemosphere; 2020 May; 247():125863. PubMed ID: 31972485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and performance of silver-based catalysts on the catalytic oxidation of toluene.
    Kim SC; Ryu JY
    Environ Technol; 2011 Apr; 32(5-6):561-8. PubMed ID: 21877537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.
    Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch
    J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction--preventing emission of by-products.
    Tokumura M; Wada Y; Usami Y; Yamaki T; Mizukoshi A; Noguchi M; Yanagisawa Y
    Chemosphere; 2012 Nov; 89(10):1238-42. PubMed ID: 22871338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alumina decorated TiO2 nanotubes with ordered mesoporous walls as high sensitivity NO(x) gas sensors at room temperature.
    Lü R; Zhou W; Shi K; Yang Y; Wang L; Pan K; Tian C; Ren Z; Fu H
    Nanoscale; 2013 Sep; 5(18):8569-76. PubMed ID: 23892951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system.
    Al Zallouha M; Landkocz Y; Brunet J; Cousin R; Genty E; Courcot D; Siffert S; Shirali P; Billet S
    Environ Res; 2017 Jan; 152():328-335. PubMed ID: 27837714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene.
    Wang CH
    Chemosphere; 2004 Apr; 55(1):11-7. PubMed ID: 14720541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.