BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 25428810)

  • 1. Chronic nicotine exposure augments gustatory plasticity in Caenorhabditis elegans: involvement of dopamine signaling.
    Matsuura T; Urushihata T
    Biosci Biotechnol Biochem; 2015; 79(3):462-9. PubMed ID: 25428810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of gustatory plasticity due to acute nicotine exposure in the nematode Caenorhabditis elegans.
    Matsuura T; Miura H; Nishino A
    Neurosci Res; 2013 Nov; 77(3):155-61. PubMed ID: 24025430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate.
    Hukema RK; Rademakers S; Jansen G
    Learn Mem; 2008 Nov; 15(11):829-36. PubMed ID: 18984564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term nicotine exposure induces long-lasting modulation of gustatory plasticity in
    Urushihata T; Wakabayashi T; Osato S; Yamashita T; Matsuura T
    Biochem Biophys Rep; 2016 Dec; 8():41-47. PubMed ID: 28955940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of caffeine on gustatory plasticity in the nematode Caenorhabditis elegans.
    Urushihata T; Takuwa H; Higuchi Y; Sakata K; Wakabayashi T; Nishino A; Matsuura T
    Biosci Biotechnol Biochem; 2016 Oct; 80(10):1990-4. PubMed ID: 27280475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol interferes with gustatory plasticity in Caenorhabditis elegans.
    Wang Y; Tang L; Feng X; Du W; Liu BF
    Neurosci Res; 2011 Dec; 71(4):341-7. PubMed ID: 21889959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15.
    Sellings L; Pereira S; Qian C; Dixon-McDougall T; Nowak C; Zhao B; Tyndale RF; van der Kooy D
    Eur J Neurosci; 2013 Mar; 37(5):743-56. PubMed ID: 23351035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of chemotactic response to sodium acetate in the nematode Caenorhabditis elegans.
    Matsuura T; Oda T; Hayashi G; Sugisaki D; Ichinose M
    Zoolog Sci; 2010 Aug; 27(8):629-37. PubMed ID: 20695778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myoinhibitory peptide signaling modulates aversive gustatory learning in Caenorhabditis elegans.
    Peymen K; Watteyne J; Borghgraef C; Van Sinay E; Beets I; Schoofs L
    PLoS Genet; 2019 Feb; 15(2):e1007945. PubMed ID: 30779740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.
    Hukema RK; Rademakers S; Dekkers MP; Burghoorn J; Jansen G
    EMBO J; 2006 Jan; 25(2):312-22. PubMed ID: 16407969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure of nicotine to ventral tegmental area slices induces glutamatergic synaptic plasticity on dopamine neurons.
    Jin Y; Yang K; Wang H; Wu J
    Synapse; 2011 Apr; 65(4):332-8. PubMed ID: 20730803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of dopamine-dependent behaviors by the Caenorhabditis elegans Olig homolog HLH-17.
    Felton CM; Johnson CM
    J Neurosci Res; 2011 Oct; 89(10):1627-36. PubMed ID: 21688290
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Sorathia N; Chawda N; Saraki K; Rajadhyaksha MS; Hejmadi M
    Int J Neurosci; 2019 Sep; 129(9):864-870. PubMed ID: 30696318
    [No Abstract]   [Full Text] [Related]  

  • 15. Long term alterations in synaptic physiology, expression of β2 nicotinic receptors and ERK1/2 signaling in the hippocampus of rats with prenatal nicotine exposure.
    Parameshwaran K; Buabeid MA; Bhattacharya S; Uthayathas S; Kariharan T; Dhanasekaran M; Suppiramaniam V
    Neurobiol Learn Mem; 2013 Nov; 106():102-11. PubMed ID: 23871741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotine-induced structural plasticity in mesencephalic dopaminergic neurons is mediated by dopamine D3 receptors and Akt-mTORC1 signaling.
    Collo G; Bono F; Cavalleri L; Plebani L; Mitola S; Merlo Pich E; Millan MJ; Zoli M; Maskos U; Spano P; Missale C
    Mol Pharmacol; 2013 Jun; 83(6):1176-89. PubMed ID: 23543412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parental and larval exposure to nicotine modulate spontaneous activity as well as cholinergic and GABA receptor expression in adult C. elegans.
    Rose JK; Miller MK; Crane SA; Hope KA; Pittman PG
    Neurotoxicol Teratol; 2013; 39():122-7. PubMed ID: 23906944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2+.
    Toulorge D; Guerreiro S; Hild A; Maskos U; Hirsch EC; Michel PP
    FASEB J; 2011 Aug; 25(8):2563-73. PubMed ID: 21507900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reparatory effects of nicotine on NMDA receptor-mediated synaptic plasticity in the hippocampal CA1 region of chronically lead-exposed rats.
    Wang HL; Chen XT; Luo L; Lou ZY; Wang S; Chen JT; Wang M; Sun LG; Ruan DY
    Eur J Neurosci; 2006 Mar; 23(5):1111-9. PubMed ID: 16553775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.