These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25428929)

  • 1. Heritability and cross-sex genetic correlations of early-life circulating testosterone levels in a wild mammal.
    Pavitt AT; Walling CA; Pemberton JM; Kruuk LE
    Biol Lett; 2014 Nov; 10(11):20140685. PubMed ID: 25428929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sexually antagonistic genetic variation for fitness in red deer.
    Foerster K; Coulson T; Sheldon BC; Pemberton JM; Clutton-Brock TH; Kruuk LE
    Nature; 2007 Jun; 447(7148):1107-10. PubMed ID: 17597758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heritability of fitness in a wild mammal population.
    Kruuk LE; Clutton-Brock TH; Slate J; Pemberton JM; Brotherstone S; Guinness FE
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):698-703. PubMed ID: 10639142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variances and covariances of phenological traits in a wild mammal population.
    Clements MN; Clutton-Brock TH; Guinness FE; Pemberton JM; Kruuk LE
    Evolution; 2011 Mar; 65(3):788-801. PubMed ID: 21044060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus).
    Slate J; Kruuk LE; Marshall TC; Pemberton JM; Clutton-Brock TH
    Proc Biol Sci; 2000 Aug; 267(1453):1657-62. PubMed ID: 11467429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early determinants of lifetime reproductive success differ between the sexes in red deer.
    Kruuk LE; Clutton-Brock TH; Rose KE; Guinness FE
    Proc Biol Sci; 1999 Aug; 266(1429):1655-61. PubMed ID: 10501037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect genetics effects and evolutionary constraint: an analysis of social dominance in red deer, Cervus elaphus.
    Wilson AJ; Morrissey MB; Adams MJ; Walling CA; Guinness FE; Pemberton JM; Clutton-Brock TH; Kruuk LE
    J Evol Biol; 2011 Apr; 24(4):772-83. PubMed ID: 21288272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuating asymmetry in a secondary sexual trait: no associations with individual fitness, environmental stress or inbreeding, and no heritability.
    Kruuk LE; Slate J; Pemberton JM; Clutton-Brock TH
    J Evol Biol; 2003 Jan; 16(1):101-13. PubMed ID: 14635885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antler size in red deer: heritability and selection but no evolution.
    Kruuk EB; Slate J; Pemberton JM; Brotherstone S; Guinness F; Clutton-Brock T
    Evolution; 2002 Aug; 56(8):1683-95. PubMed ID: 12353761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus).
    Bartos L; Schams D; Bubenik GA
    Bone; 2009 Apr; 44(4):691-8. PubMed ID: 19124089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between rank and plasma testosterone and cortisol in red deer males (Cervus elaphus).
    Bartoš L; Schams D; Bubenik GA; Kotrba R; Tománek M
    Physiol Behav; 2010 Dec; 101(5):628-34. PubMed ID: 20869973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testosterone and the dark ventral patch of male red deer: the role of the social environment.
    de la Peña E; Martín J; Barja I; Carranza J
    Naturwissenschaften; 2020 Apr; 107(3):18. PubMed ID: 32333124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus).
    Slate J; Visscher PM; MacGregor S; Stevens D; Tate ML; Pemberton JM
    Genetics; 2002 Dec; 162(4):1863-73. PubMed ID: 12524355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer.
    Walling CA; Morrissey MB; Foerster K; Clutton-Brock TH; Pemberton JM; Kruuk LE
    Genetics; 2014 Dec; 198(4):1735-49. PubMed ID: 25278555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of advancing births on testosterone until 2.5 years of age and puberty in Iberian red deer (Cervus elaphus hispanicus).
    Gómez JA; García AJ; Landete-Castillejos T; Gallego L
    Anim Reprod Sci; 2006 Nov; 96(1-2):79-88. PubMed ID: 16406397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in blood content and histology during growth of antlers in red deer (Cervus elaphus) and their relationship to plasma testosterone levels.
    Muir PD; Sykes AR; Barrell GK
    J Anat; 1988 Jun; 158():31-42. PubMed ID: 3225223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Genomic Region Containing
    Johnston SE; Huisman J; Pemberton JM
    G3 (Bethesda); 2018 Jul; 8(7):2265-2276. PubMed ID: 29764960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative costs of offspring sex and offspring survival in a polygynous mammal.
    Froy H; Walling CA; Pemberton JM; Clutton-Brock TH; Kruuk LE
    Biol Lett; 2016 Sep; 12(9):. PubMed ID: 27601725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating selection on neonatal traits in red deer using elasticity path analysis.
    Coulson T; Kruuk LE; Tavecchia G; Pemberton JM; Clutton-Brock TH
    Evolution; 2003 Dec; 57(12):2879-92. PubMed ID: 14761065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring individual quality in a wild population of red deer.
    Moyes K; Morgan BJ; Morris A; Morris SJ; Clutton-Brock TH; Coulson T
    J Anim Ecol; 2009 Mar; 78(2):406-13. PubMed ID: 19021783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.