These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25429151)

  • 1. A role for mixed corollary discharge and proprioceptive signals in predicting the sensory consequences of movements.
    Requarth T; Kaifosh P; Sawtell NB
    J Neurosci; 2014 Nov; 34(48):16103-16. PubMed ID: 25429151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit.
    Requarth T; Sawtell NB
    Neuron; 2014 May; 82(4):896-907. PubMed ID: 24853945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of electrosensory encoding associated with an adaptive filter.
    Sawtell NB; Williams A
    J Neurosci; 2008 Feb; 28(7):1598-612. PubMed ID: 18272681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish.
    Bell CC; Caputi A; Grant K; Serrier J
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4650-4. PubMed ID: 8506312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of motor command feedback in electrosensory processing.
    Meek J; Grant K
    Eur J Morphol; 1994 Aug; 32(2-4):225-34. PubMed ID: 7803171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of learned responses in the mormyrid electrosensory lobe.
    Dempsey C; Abbott LF; Sawtell NB
    Elife; 2019 Mar; 8():. PubMed ID: 30860480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli.
    Mohr C; Roberts PD; Bell CC
    J Neurophysiol; 2003 Aug; 90(2):1193-210. PubMed ID: 12904505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.
    Alviña K; Sawtell NB
    J Neurophysiol; 2014 Jul; 112(2):328-39. PubMed ID: 24790163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems.
    Sawtell NB
    Annu Rev Physiol; 2017 Feb; 79():381-399. PubMed ID: 27813831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity.
    Bell CC; Grant K
    J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hormonal coordination of motor output and internal prediction of sensory consequences in an electric fish.
    Fukutomi M; Carlson BA
    Curr Biol; 2023 Aug; 33(16):3350-3359.e4. PubMed ID: 37490922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A temporal basis for predicting the sensory consequences of motor commands in an electric fish.
    Kennedy A; Wayne G; Kaifosh P; Alviña K; Abbott LF; Sawtell NB
    Nat Neurosci; 2014 Mar; 17(3):416-22. PubMed ID: 24531306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity in the mormyrid electrosensory lobe.
    Bell CC; Han VZ; Sugawara Y; Grant K
    J Exp Biol; 1999 May; 202(Pt 10):1339-47. PubMed ID: 10210674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic plasticity in a cerebellum-like structure depends on temporal order.
    Bell CC; Han VZ; Sugawara Y; Grant K
    Nature; 1997 May; 387(6630):278-81. PubMed ID: 9153391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit.
    Sawtell NB
    Neuron; 2010 May; 66(4):573-84. PubMed ID: 20510861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei.
    Sawtell NB; Mohr C; Bell CC
    J Neurophysiol; 2005 Apr; 93(4):2090-103. PubMed ID: 15774712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple behavior-specific cancellation signals contribute to suppressing predictable sensory reafference in a cerebellum-like structure.
    Lai NY; Bell JM; Bodznick D
    J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 33653722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.