These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25429250)

  • 1. Unravelling associations between unassigned mass spectrometry peaks with frequent itemset mining techniques.
    Vu TN; Mrzic A; Valkenborg D; Maes E; Lemière F; Goethals B; Laukens K
    Proteome Sci; 2014; 12(1):54. PubMed ID: 25429250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the informativeness for biomedical literature summarization: An itemset mining method.
    Moradi M; Ghadiri N
    Comput Methods Programs Biomed; 2017 Jul; 146():77-89. PubMed ID: 28688492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marginal frequent itemset mining for fault prevention of railway overhead contact system.
    Qian K; Gao S; Yu L
    ISA Trans; 2022 Jul; 126():276-287. PubMed ID: 34332749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A primer to frequent itemset mining for bioinformatics.
    Naulaerts S; Meysman P; Bittremieux W; Vu TN; Vanden Berghe W; Goethals B; Laukens K
    Brief Bioinform; 2015 Mar; 16(2):216-31. PubMed ID: 24162173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Object Discovery From a Single Unlabeled Image by Mining Frequent Itemset With Multi-scale Features.
    Zhang R; Huang Y; Pu M; Zhang J; Guan Q; Zou Q; Ling H
    IEEE Trans Image Process; 2020 Aug; PP():. PubMed ID: 32813653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Personalized privacy-preserving frequent itemset mining using randomized response.
    Sun C; Fu Y; Zhou J; Gao H
    ScientificWorldJournal; 2014; 2014():686151. PubMed ID: 25143989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-analytical strategy for unassigned peaks using physical/mathematical separation, fragmental rules and retention index prediction: An example of sesquiterpene metabolites characterization in Cyperus rotundus.
    He M; Yan P; Yang Z; Ye Y; Cao D; Hong L; Yang T; Pei R
    J Pharm Biomed Anal; 2018 May; 154():476-485. PubMed ID: 29621725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides.
    Chick JM; Kolippakkam D; Nusinow DP; Zhai B; Rad R; Huttlin EL; Gygi SP
    Nat Biotechnol; 2015 Jul; 33(7):743-9. PubMed ID: 26076430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TKFIM: Top-K frequent itemset mining technique based on equivalence classes.
    Iqbal S; Shahid A; Roman M; Khan Z; Al-Otaibi S; Yu L
    PeerJ Comput Sci; 2021; 7():e385. PubMed ID: 33817031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical Approaches for Mining Frequent Patterns in Molecular Datasets.
    Naulaerts S; Moens S; Engelen K; Berghe WV; Goethals B; Laukens K; Meysman P
    Bioinform Biol Insights; 2016; 10():37-47. PubMed ID: 27168722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Differentially Private Frequent Itemset Mining.
    Zeng C; Naughton JF; Cai JY
    VLDB J; 2012 Nov; 6(1):25-36. PubMed ID: 24039383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unassigned MS/MS Spectra: Who Am I?
    Pathan M; Samuel M; Keerthikumar S; Mathivanan S
    Methods Mol Biol; 2017; 1549():67-74. PubMed ID: 27975284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree.
    Mi X
    Comput Intell Neurosci; 2022; 2022():7022168. PubMed ID: 35634074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel association rule mining approach using TID intermediate itemset.
    Aqra I; Herawan T; Abdul Ghani N; Akhunzada A; Ali A; Bin Razali R; Ilahi M; Raymond Choo KK
    PLoS One; 2018; 13(1):e0179703. PubMed ID: 29351287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.
    Nasr Azadani M; Ghadiri N; Davoodijam E
    J Biomed Inform; 2018 Aug; 84():42-58. PubMed ID: 29906584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining visual collocation patterns via self-supervised subspace learning.
    Yuan J; Wu Y
    IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):334-46. PubMed ID: 22156999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denoising peptide tandem mass spectra for spectral libraries: a Bayesian approach.
    Shao W; Lam H
    J Proteome Res; 2013 Jul; 12(7):3223-32. PubMed ID: 23675732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient pattern growth approach for mining fault tolerant frequent itemsets.
    Bashir S
    Expert Syst Appl; 2020 Apr; 143():113046. PubMed ID: 32288329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data.
    Maria Luna J; Padillo F; Pechenizkiy M; Ventura S
    IEEE Trans Cybern; 2018 Oct; 48(10):2851-2865. PubMed ID: 28961134
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.