These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25429402)

  • 1. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb.
    He M; Walter M; Kravchyk KV; Erni R; Widmer R; Kovalenko MV
    Nanoscale; 2015 Jan; 7(2):455-9. PubMed ID: 25429402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes.
    Kravchyk K; Protesescu L; Bodnarchuk MI; Krumeich F; Yarema M; Walter M; Guntlin C; Kovalenko MV
    J Am Chem Soc; 2013 Mar; 135(11):4199-202. PubMed ID: 23414392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk.
    He M; Kravchyk K; Walter M; Kovalenko MV
    Nano Lett; 2014 Mar; 14(3):1255-62. PubMed ID: 24484409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse CoSn
    Wang S; He M; Walter M; Krumeich F; Kravchyk KV; Kovalenko MV
    Nanoscale; 2018 Apr; 10(15):6827-6831. PubMed ID: 29595199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries.
    Wang S; He M; Walter M; Kravchyk KV; Kovalenko MV
    Chem Commun (Camb); 2020 Nov; 56(89):13872-13875. PubMed ID: 33090131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.
    Ji L; Zhou W; Chabot V; Yu A; Xiao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal BiF3 nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes.
    Oszajca MF; Kravchyk KV; Walter M; Krieg F; Bodnarchuk MI; Kovalenko MV
    Nanoscale; 2015 Oct; 7(40):16601-5. PubMed ID: 26399498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.
    Li J; Pu J; Liu Z; Wang J; Wu W; Zhang H; Ma H
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25250-25256. PubMed ID: 28691802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries.
    Walter M; Erni R; Kovalenko MV
    Sci Rep; 2015 Feb; 5():8418. PubMed ID: 25673146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-Sb Nanocrystals Embedded in Phosphorus as High-Performance Potassium Ion Battery Electrodes.
    Chen KT; Tuan HY
    ACS Nano; 2020 Sep; 14(9):11648-11661. PubMed ID: 32886479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Critical Role of Sn Content in SnSb@C Nanofiber Anode on Li Storage Mechanism and Battery Performance.
    Das S; Guru Row TN; Bhattacharyya AJ
    ACS Omega; 2017 Dec; 2(12):9250-9260. PubMed ID: 31457438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage.
    Liu J; Wen Y; van Aken PA; Maier J; Yu Y
    Nano Lett; 2014 Nov; 14(11):6387-92. PubMed ID: 25286289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sb nanocrystal-anchored hollow carbon microspheres for high-capacity and high-cycling performance lithium-ion batteries.
    Guo M; Chen J; Meng W; Cheng L; Bai Z; Wang Z; Yang F
    Nanotechnology; 2020 Mar; 31(13):135404. PubMed ID: 31810067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance.
    Luo J; Tao X; Zhang J; Xia Y; Huang H; Zhang L; Gan Y; Liang C; Zhang W
    ACS Nano; 2016 Feb; 10(2):2491-9. PubMed ID: 26836262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders.
    Gurunathan P; Ette PM; Ramesha K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16556-64. PubMed ID: 25203752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase evolution of tin nanocrystals in lithium ion batteries.
    Im HS; Cho YJ; Lim YR; Jung CS; Jang DM; Park J; Shojaei F; Kang HS
    ACS Nano; 2013 Dec; 7(12):11103-11. PubMed ID: 24195495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications.
    Xiao L; Cao Y; Xiao J; Wang W; Kovarik L; Nie Z; Liu J
    Chem Commun (Camb); 2012 Apr; 48(27):3321-3. PubMed ID: 22361490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.
    Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J
    Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal tin-germanium nanorods and their Li-ion storage properties.
    Bodnarchuk MI; Kravchyk KV; Krumeich F; Wang S; Kovalenko MV
    ACS Nano; 2014 Mar; 8(3):2360-8. PubMed ID: 24483276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal synthesis of cuprite (Cu2O) octahedral nanocrystals and their electrochemical lithiation.
    Paolella A; Brescia R; Prato M; Povia M; Marras S; De Trizio L; Falqui A; Manna L; George C
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2745-51. PubMed ID: 23465697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.