BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25429511)

  • 1. Interactions between gold nanoparticles and amyloid β25-35 peptide.
    Peng J; Weng J; Ren L; Sun LP
    IET Nanobiotechnol; 2014 Dec; 8(4):295-303. PubMed ID: 25429511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Au nanoparticles on the aggregation of amyloid-β-(25-35) peptides.
    Ma Q; Wei G; Yang X
    Nanoscale; 2013 Nov; 5(21):10397-403. PubMed ID: 24056949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disclosing the Interaction of Gold Nanoparticles with Aβ(1-40) Monomers through Replica Exchange Molecular Dynamics Simulations.
    Tavanti F; Pedone A; Menziani MC
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Template-assisted lateral growth of amyloid-β42 fibrils studied by differential labeling with gold nanoparticles.
    Arimon M; Sanz F; Giralt E; Carulla N
    Bioconjug Chem; 2012 Jan; 23(1):27-32. PubMed ID: 22129071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing Effects of Cucurbit[7]uril and 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose on Amyloid β25-35 Assembly.
    de Almeida NE; Do TD; Tro M; LaPointe NE; Feinstein SC; Shea JE; Bowers MT
    ACS Chem Neurosci; 2016 Feb; 7(2):218-26. PubMed ID: 26629788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity.
    Liao YH; Chang YJ; Yoshiike Y; Chang YC; Chen YR
    Small; 2012 Dec; 8(23):3631-9. PubMed ID: 22915547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of gold nanoparticle based colorimetric method for quantitatively studying the inhibitors of Cu(2+)/Zn(2+) induced β-amyloid peptide assembly.
    Wang C; Wang K; Wang Z
    Anal Chim Acta; 2015 Feb; 858():42-8. PubMed ID: 25597800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles.
    John T; Gladytz A; Kubeil C; Martin LL; Risselada HJ; Abel B
    Nanoscale; 2018 Dec; 10(45):20894-20913. PubMed ID: 30225490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of gold nanoparticles with amino acid, beta-amyloid peptides and fragment.
    Majzik A; Fülöp L; Csapó E; Bogár F; Martinek T; Penke B; Bíró G; Dékány I
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):235-41. PubMed ID: 20674288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLVFFA-Functionalized Gold Nanoclusters Inhibit Aβ40 Fibrillation, Fibrils' Prolongation, and Mature Fibrils' Disaggregation.
    Hao S; Li X; Han A; Yang Y; Fang G; Liu J; Wang S
    ACS Chem Neurosci; 2019 Nov; 10(11):4633-4642. PubMed ID: 31637909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective screen for amyloid β aggregation inhibitor using amyloid β-conjugated gold nanoparticles.
    Han SH; Chang YJ; Jung ES; Kim JW; Na DL; Mook-Jung I
    Int J Nanomedicine; 2010 Dec; 6():1-12. PubMed ID: 21289976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the cross-interaction between hIAPP and Aβ
    Pang B; Zhuang X; Bian X; Liu S; Liu Z; Song F
    J Mass Spectrom; 2020 Oct; 55(10):e4643. PubMed ID: 32893436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a peptide probe for β-amyloid aggregates.
    Aoraha E; Candreva J; Kim JR
    Mol Biosyst; 2015 Aug; 11(8):2281-9. PubMed ID: 26073444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH changes the aggregation propensity of amyloid-β without altering the monomer conformation.
    Bhowmik D; MacLaughlin CM; Chandrakesan M; Ramesh P; Venkatramani R; Walker GC; Maiti S
    Phys Chem Chem Phys; 2014 Jan; 16(3):885-9. PubMed ID: 24292856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive label-free nanoplasmonic optical imaging for real-time monitoring of in vitro amyloid fibrogenesis.
    Lee SS; Lee LP
    Nanoscale; 2014 Apr; 6(7):3561-5. PubMed ID: 24598888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of beta-amyloid interactions with peptide functionalized gold nanoparticles.
    Hemmaragala NM; Arvidsson PI; Maguire GE; Kruger HG; Govender T
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2179-84. PubMed ID: 22755035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naked-eye detection of amyloid aggregates using gold nanoparticles modified with amyloid beta antibody.
    Sakono M; Zako T; Maeda M
    Anal Sci; 2012; 28(1):73. PubMed ID: 22232229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of oligomers in the early phase of pH-induced aggregation of the Alzheimer Aβ(12-28) peptide [corrected].
    Mandal P; Eremina N; Barth A
    J Phys Chem B; 2012 Oct; 116(41):12389-97. PubMed ID: 22978560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide backbone modification in the bend region of amyloid-β inhibits fibrillogenesis but not oligomer formation.
    Johnson EC; Lanning JD; Meredith SC
    J Pept Sci; 2016 May; 22(5):368-73. PubMed ID: 27114096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.