These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25429784)
1. Relating external compressing pressure to mean arterial pressure in non-invasive blood pressure measurements. Chin KY; Panerai RB J Med Eng Technol; 2015 Jan; 39(1):79-85. PubMed ID: 25429784 [TBL] [Abstract][Full Text] [Related]
2. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y; Wang Z; Zhang L; Yang X; Song J Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [TBL] [Abstract][Full Text] [Related]
3. A new noninvasive device for continuous arterial blood pressure monitoring in the superficial temporal artery. Chin KY; Panerai RB Physiol Meas; 2013 Apr; 34(4):407-21. PubMed ID: 23524512 [TBL] [Abstract][Full Text] [Related]
4. Indirect measurement of the carotid arterial pressure from vibrocardiographic signal: Calibration of the waveform and comparison with photoplethysmographic signal. Casacanditella L; Cosoli G; Casaccia S; Tomasini EP; Scalise L Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3568-3571. PubMed ID: 28324990 [TBL] [Abstract][Full Text] [Related]
5. Ventilation-Induced Modulation of Pulse Oximeter Waveforms: A Method for the Assessment of Early Changes in Intravascular Volume During Spinal Fusion Surgery in Pediatric Patients. Alian AA; Atteya G; Gaal D; Golembeski T; Smith BG; Dai F; Silverman DG; Shelley K Anesth Analg; 2016 Aug; 123(2):346-56. PubMed ID: 27284998 [TBL] [Abstract][Full Text] [Related]
6. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Shin H; Min SD Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939 [TBL] [Abstract][Full Text] [Related]
7. Photoplethysmographic characterization of vascular tone mediated changes in arterial pressure: an observational study. Tusman G; Acosta CM; Pulletz S; Böhm SH; Scandurra A; Arca JM; Madorno M; Sipmann FS J Clin Monit Comput; 2019 Oct; 33(5):815-824. PubMed ID: 30554338 [TBL] [Abstract][Full Text] [Related]
8. Real-time estimation of mean arterial blood pressure based on photoplethysmography dicrotic notch and perfusion index. A pilot study. Joachim J; Coutrot M; Millasseau S; Matéo J; Mebazaa A; Gayat E; Vallée F J Clin Monit Comput; 2021 Apr; 35(2):395-404. PubMed ID: 32078111 [TBL] [Abstract][Full Text] [Related]
9. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood. Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068 [TBL] [Abstract][Full Text] [Related]
10. Advanced Volume-Compensation Method for Indirect Finger Arterial Pressure Determination: Comparison with Brachial Sphygmomanometry. Matsumura K; Yamakoshi T; Rolfe P; Yamakoshi KI IEEE Trans Biomed Eng; 2017 May; 64(5):1131-1137. PubMed ID: 27429430 [TBL] [Abstract][Full Text] [Related]
11. Automatic ankle pressure measurements using PPG in ankle-brachial pressure index determination. Jönsson B; Laurent C; Eneling M; Skau T; Lindberg LG Eur J Vasc Endovasc Surg; 2005 Oct; 30(4):395-401. PubMed ID: 15964772 [TBL] [Abstract][Full Text] [Related]
12. Non-invasive quantification of peripheral arterial volume distensibility and its non-linear relationship with arterial pressure. Zheng D; Murray A J Biomech; 2009 May; 42(8):1032-7. PubMed ID: 19345360 [TBL] [Abstract][Full Text] [Related]
13. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station. Li K; Zhang S; Yang L; Luo Z; Gu G Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969 [TBL] [Abstract][Full Text] [Related]
14. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation. Zhou Y; Tan Z; Liu Y; Cheng H Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386 [No Abstract] [Full Text] [Related]
15. Estimation of instantaneous venous blood saturation using the photoplethysmograph waveform. Shafqat K; Langford RM; Kyriacou PA Physiol Meas; 2015 Oct; 36(10):2203-14. PubMed ID: 26365652 [TBL] [Abstract][Full Text] [Related]
16. Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram. Zahedi E; Sohani V; Ali MA; Chellappan K; Beng GK J Healthc Eng; 2015; 6(1):121-44. PubMed ID: 25708380 [TBL] [Abstract][Full Text] [Related]
17. Photoplethysmography and nociception. Korhonen I; Yli-Hankala A Acta Anaesthesiol Scand; 2009 Sep; 53(8):975-85. PubMed ID: 19572939 [TBL] [Abstract][Full Text] [Related]
18. Noninvasive monitoring by photoplethysmography. Sahni R Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270 [TBL] [Abstract][Full Text] [Related]
19. Time discrete, near infrared photoplethysmography (NIRP) for non-invasive investigation of the volume pulse in man. Christ F; Athelogou M; Niklas M; Baschnegger H; Moser CM; Peter K; Messmer K Eur J Med Res; 1996 Feb; 1(5):237-43. PubMed ID: 9374444 [TBL] [Abstract][Full Text] [Related]
20. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms. Hsiu H; Hsu CL; Wu TL Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]