BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25429921)

  • 41. Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: Ipsi- and contralateral projections.
    Castle M; Aymerich MS; Sanchez-Escobar C; Gonzalo N; Obeso JA; Lanciego JL
    J Comp Neurol; 2005 Mar; 483(2):143-53. PubMed ID: 15678473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis.
    Dogonowski AM; Siebner HR; Sørensen PS; Wu X; Biswal B; Paulson OB; Dyrby TB; Skimminge A; Blinkenberg M; Madsen KH
    Mult Scler; 2013 Apr; 19(5):559-66. PubMed ID: 23012251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Action Selection and Flexible Switching Controlled by the Intralaminar Thalamic Neurons.
    Kato S; Fukabori R; Nishizawa K; Okada K; Yoshioka N; Sugawara M; Maejima Y; Shimomura K; Okamoto M; Eifuku S; Kobayashi K
    Cell Rep; 2018 Feb; 22(9):2370-2382. PubMed ID: 29490273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease.
    Lanciego JL; López IP; Rico AJ; Aymerich MS; Pérez-Manso M; Conte L; Combarro C; Roda E; Molina C; Gonzalo N; Castle M; Tuñón T; Erro E; Barroso-Chinea P
    Brain Res Bull; 2009 Feb; 78(2-3):55-9. PubMed ID: 18790023
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blood oxygenation level-dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson's disease.
    Prodoehl J; Spraker M; Corcos D; Comella C; Vaillancourt D
    Mov Disord; 2010 Oct; 25(13):2035-43. PubMed ID: 20725915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Overlapping territories between the thalamostriatal and nigrothalamic projections in cats.
    de las Heras S; Mengual E; Giménez-Amaya JM
    Neuroreport; 1998 Jun; 9(8):1913-6. PubMed ID: 9665625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Association between the basal ganglia and large-scale brain networks in epilepsy.
    Rektor I; Tomčík J; Mikl M; Mareček R; Brázdil M; Rektorová I
    Brain Topogr; 2013 Apr; 26(2):355-62. PubMed ID: 23400553
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A resting state network in the motor control circuit of the basal ganglia.
    Robinson S; Basso G; Soldati N; Sailer U; Jovicich J; Bruzzone L; Kryspin-Exner I; Bauer H; Moser E
    BMC Neurosci; 2009 Nov; 10():137. PubMed ID: 19930640
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intralaminar thalamic nuclei lesions: widespread impact on dopamine denervation-mediated cellular defects in the rat basal ganglia.
    Bacci JJ; Kachidian P; Kerkerian-Le Goff L; Salin P
    J Neuropathol Exp Neurol; 2004 Jan; 63(1):20-31. PubMed ID: 14748558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional architecture of the cortico-basal ganglia circuitry during motor task execution: correlations of strength of functional connectivity with neuropsychological task performance among female subjects.
    Marchand WR; Lee JN; Suchy Y; Garn C; Chelune G; Johnson S; Wood N
    Hum Brain Mapp; 2013 May; 34(5):1194-207. PubMed ID: 22287185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histamine reduces firing and bursting of anterior and intralaminar thalamic neurons and activates striatal cells in anesthetized rats.
    Sittig N; Davidowa H
    Behav Brain Res; 2001 Oct; 124(2):137-43. PubMed ID: 11640966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional anatomy of the basal ganglia: limbic aspects.
    Buot A; Yelnik J
    Rev Neurol (Paris); 2012; 168(8-9):569-75. PubMed ID: 22902172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The specificity of the 'nonspecific' midline and intralaminar thalamic nuclei.
    Groenewegen HJ; Berendse HW
    Trends Neurosci; 1994 Feb; 17(2):52-7. PubMed ID: 7512768
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of 10 GABA(A) receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca mulatta studied with in situ hybridization histochemistry.
    Kultas-Ilinsky K; Leontiev V; Whiting PJ
    Neuroscience; 1998 Jul; 85(1):179-204. PubMed ID: 9607711
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.
    Rodriguez-Sabate C; Morales I; Sanchez A; Rodriguez M
    Front Neurosci; 2017; 11():345. PubMed ID: 28676738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cerebello-basal Ganglia Networks and Cortical Network Global Efficiency.
    Jackson TB; Bernard JA
    Cerebellum; 2023 Aug; 22(4):588-600. PubMed ID: 35661099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Relay role of the nucleus centralis medialis of the thalamus for the heterosensory branches of the caudate nucleus].
    ALBE-FESSARD D; MASSION J
    C R Seances Soc Biol Fil; 1959; 153():978-81. PubMed ID: 13792355
    [No Abstract]   [Full Text] [Related]  

  • 58. The basal ganglia: a neural network with more than motor function.
    Afifi AK
    Semin Pediatr Neurol; 2003 Mar; 10(1):3-10. PubMed ID: 12785742
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution.
    Marchand WR; Lee JN; Suchy Y; Garn C; Johnson S; Wood N; Chelune G
    Neuroimage; 2011 Mar; 55(1):194-203. PubMed ID: 21167945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states.
    Smith Y; Raju D; Nanda B; Pare JF; Galvan A; Wichmann T
    Brain Res Bull; 2009 Feb; 78(2-3):60-8. PubMed ID: 18805468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.