These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 25430050)
1. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Bilbao A; Varesio E; Luban J; Strambio-De-Castillia C; Hopfgartner G; Müller M; Lisacek F Proteomics; 2015 Mar; 15(5-6):964-80. PubMed ID: 25430050 [TBL] [Abstract][Full Text] [Related]
2. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Chapman JD; Goodlett DR; Masselon CD Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846 [TBL] [Abstract][Full Text] [Related]
3. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Arnhard K; Gottschall A; Pitterl F; Oberacher H Anal Bioanal Chem; 2015 Jan; 407(2):405-14. PubMed ID: 25366975 [TBL] [Abstract][Full Text] [Related]
4. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis. Prakash A; Peterman S; Ahmad S; Sarracino D; Frewen B; Vogelsang M; Byram G; Krastins B; Vadali G; Lopez M J Proteome Res; 2014 Dec; 13(12):5415-30. PubMed ID: 25244318 [TBL] [Abstract][Full Text] [Related]
5. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
7. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites. Bauer M; Ahrné E; Baron AP; Glatter T; Fava LL; Santamaria A; Nigg EA; Schmidt A J Proteome Res; 2014 Dec; 13(12):5973-88. PubMed ID: 25330945 [TBL] [Abstract][Full Text] [Related]
9. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Distler U; Kuharev J; Navarro P; Tenzer S Nat Protoc; 2016 Apr; 11(4):795-812. PubMed ID: 27010757 [TBL] [Abstract][Full Text] [Related]
10. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut. Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657 [TBL] [Abstract][Full Text] [Related]
11. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865 [TBL] [Abstract][Full Text] [Related]
12. Software for quantitative proteomic analysis using stable isotope labeling and data independent acquisition. Huang X; Liu M; Nold MJ; Tian C; Fu K; Zheng J; Geromanos SJ; Ding SJ Anal Chem; 2011 Sep; 83(18):6971-9. PubMed ID: 21834580 [TBL] [Abstract][Full Text] [Related]
13. In-depth evaluation of software tools for data-independent acquisition based label-free quantification. Kuharev J; Navarro P; Distler U; Jahn O; Tenzer S Proteomics; 2015 Sep; 15(18):3140-51. PubMed ID: 25545627 [TBL] [Abstract][Full Text] [Related]
14. Data-Driven Tool for Cross-Run Ion Selection and Peak-Picking in Quantitative Proteomics with Data-Independent Acquisition LC-MS/MS. Yan B; Shi M; Cai S; Su Y; Chen R; Huang C; Chen DDY Anal Chem; 2023 Nov; 95(45):16558-16566. PubMed ID: 37906674 [TBL] [Abstract][Full Text] [Related]
15. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay. Heaven MR; Funk AJ; Cobbs AL; Haffey WD; Norris JL; McCullumsmith RE; Greis KD J Mass Spectrom; 2016 Jan; 51(1):1-11. PubMed ID: 26757066 [TBL] [Abstract][Full Text] [Related]
16. Technical advances in proteomics: new developments in data-independent acquisition. Hu A; Noble WS; Wolf-Yadlin A F1000Res; 2016; 5():. PubMed ID: 27092249 [TBL] [Abstract][Full Text] [Related]
17. MassChroQ: a versatile tool for mass spectrometry quantification. Valot B; Langella O; Nano E; Zivy M Proteomics; 2011 Sep; 11(17):3572-7. PubMed ID: 21751374 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
19. Data processing has major impact on the outcome of quantitative label-free LC-MS analysis. Chawade A; Sandin M; Teleman J; Malmström J; Levander F J Proteome Res; 2015 Feb; 14(2):676-87. PubMed ID: 25407311 [TBL] [Abstract][Full Text] [Related]
20. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. Wang G; Wu WW; Zeng W; Chou CL; Shen RF J Proteome Res; 2006 May; 5(5):1214-23. PubMed ID: 16674111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]