These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25430124)

  • 1. A 1 kA-class cryogen-free critical current characterization system for superconducting coated conductors.
    Strickland NM; Hoffmann C; Wimbush SC
    Rev Sci Instrum; 2014 Nov; 85(11):113907. PubMed ID: 25430124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High current variable temperature electrical characterization system for superconducting wires and tapes with continuous sample rotation in a split coil magnet.
    Lao M; Hänisch J; Kauffmann-Weiss S; Gehring R; Fillinger H; Drechsler A; Holzapfel B
    Rev Sci Instrum; 2019 Jan; 90(1):015106. PubMed ID: 30709201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors.
    Goodrich LF; Cheggour N; Stauffer TC; Filla BJ; Lu XF
    J Res Natl Inst Stand Technol; 2013; 118():301-52. PubMed ID: 26401435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.
    Sunwong P; Higgins JS; Hampshire DP
    Rev Sci Instrum; 2014 Jun; 85(6):065111. PubMed ID: 24985856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.
    Ma H; Liu H; Liu F; Zhang H; Ci L; Shi Y; Lei L
    Rev Sci Instrum; 2018 Jan; 89(1):015102. PubMed ID: 29390670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.
    Nishijima G; Kitaguchi H; Tshuchiya Y; Nishimura T; Kato T
    Rev Sci Instrum; 2013 Jan; 84(1):015113. PubMed ID: 23387701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of new 400-MHz HTS power-driven magnet NMR technology on typical pharmaceutical API, cinacalcet HCl.
    Silva Elipe MV; Donovan N; Krull R; Pooke D; Colson KL
    Magn Reson Chem; 2018 Sep; 56(9):817-825. PubMed ID: 29664140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors.
    Glowacki BA; Majoros M
    J Phys Condens Matter; 2009 Jun; 21(25):254206. PubMed ID: 21828430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile facility for investigating field-dependent and mechanical properties of superconducting wires and tapes under cryogenic-electro-magnetic multifields.
    Wang X; Zhou Y; Guan M; Xin C
    Rev Sci Instrum; 2018 Aug; 89(8):085117. PubMed ID: 30184629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.
    Yanagisawa Y; Nakagome H; Tennmei K; Hamada M; Yoshikawa M; Otsuka A; Hosono M; Kiyoshi T; Takahashi M; Yamazaki T; Maeda H
    J Magn Reson; 2010 Apr; 203(2):274-82. PubMed ID: 20149698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.
    Eom BH; Penanen K; Hahn I
    Rev Sci Instrum; 2014 Sep; 85(9):094302. PubMed ID: 25273745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.
    Ren Y; Liu X; Gao X
    Springerplus; 2016; 5(1):673. PubMed ID: 27350910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential Material Knowledge and Recent Model Developments for REBCO-Coated Conductors in Electric Power Systems.
    Trillaud F; Dos Santos G; Gonçalves Sotelo G
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport current and magnetization of Bi-2212 wires above liquid Helium temperature for cryogen-free applications.
    Leveratto A; Armenio AA; Traverso A; De Marzi G; Celentano G; Malagoli A
    Sci Rep; 2021 Jun; 11(1):11660. PubMed ID: 34083662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Cut Design of a Benchtop Cryogen-Free 23.5-T/25-mm Magnet for 1-GHz Microcoil NMR.
    Park D; Dong F; Lee W; Bascuñán J; Iwasa Y
    IEEE Trans Appl Supercond; 2023 Aug; 33(5):. PubMed ID: 37789845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotating sample magnetometer for cryogenic temperatures and high magnetic fields.
    Eisterer M; Hengstberger F; Voutsinas CS; Hörhager N; Sorta S; Hecher J; Weber HW
    Rev Sci Instrum; 2011 Jun; 82(6):063902. PubMed ID: 21721704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic, Mechanical and Thermal Modeling of Superconducting, Whole-body, Actively Shielded, 3 T MRI Magnets Wound Using MgB
    Majoros M; Sumption MD; Parizh M; Wan F; Rindfleisch MA; Doll D; Tomsic M; Collings EW
    IEEE Trans Appl Supercond; 2022 Jun; 32(4):. PubMed ID: 36245846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges.
    Parizh M; Lvovsky Y; Sumption M
    Supercond Sci Technol; 2017 Jan; 30(1):014007. PubMed ID: 28626340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.