These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25430131)

  • 1. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2014 Nov; 85(11):114705. PubMed ID: 25430131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-static displacement calibration system for a "Violin-Mode" shadow-sensor intended for Gravitational Wave detector suspensions.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2014 Oct; 85(10):105003. PubMed ID: 25362445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2016 Jul; 87(7):075002. PubMed ID: 27475587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A step-wise steerable source of illumination for low-noise "Violin-Mode" shadow sensors, intended for use in interferometric gravitational wave detectors.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2016 Jan; 87(1):015001. PubMed ID: 26827344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Load-cell based characterization system for a "Violin-Mode" shadow-sensor in advanced LIGO suspensions.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2016 Jul; 87(7):075001. PubMed ID: 27475586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shot-noise-limited laser power stabilization with a high-power photodiode array.
    Kwee P; Willke B; Danzmann K
    Opt Lett; 2009 Oct; 34(19):2912-4. PubMed ID: 19794765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interferometers for displacement-noise-free gravitational-wave detection.
    Chen Y; Pai A; Somiya K; Kawamura S; Sato S; Kokeyama K; Ward RL; Goda K; Mikhailov EE
    Phys Rev Lett; 2006 Oct; 97(15):151103. PubMed ID: 17155314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-Optimized Silicon Radiometers.
    Eppeldauer GP
    J Res Natl Inst Stand Technol; 2000; 105(2):209-19. PubMed ID: 27551606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-noise ac-bridge amplifier for ballistocardiogram measurement on an electronic weighing scale.
    Inan OT; Kovacs GT
    Physiol Meas; 2010 Jul; 31(7):N51-9. PubMed ID: 20526027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment of an interferometric gravitational wave detector.
    Fritschel P; Mavalvala N; Shoemaker D; Sigg D; Zucker M; González G
    Appl Opt; 1998 Oct; 37(28):6734-47. PubMed ID: 18301487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shot noise in gravitational-wave detectors with Fabry-Perot arms.
    Lyons TT; Regehr MW; Raab FJ
    Appl Opt; 2000 Dec; 39(36):6761-70. PubMed ID: 18354690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a displacement- and frequency-noise-free interferometer in a 3D configuration for gravitational wave detection.
    Kokeyama K; Sato S; Nishizawa A; Kawamura S; Chen Y; Sugamoto A
    Phys Rev Lett; 2009 Oct; 103(17):171101. PubMed ID: 19905742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing control noise in gravitational wave detectors with interferometric local damping of suspended optics.
    van Dongen J; Prokhorov L; Cooper SJ; Barton MA; Bonilla E; Dooley KL; Driggers JC; Effler A; Holland NA; Huddart A; Kasprzack M; Kissel JS; Lantz B; Mitchell AL; O'Dell J; Pele A; Robertson C; Mow-Lowry CM
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37191465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.
    Cumming A; Jones R; Barton M; Cagnoli G; Cantley CA; Crooks DR; Hammond GD; Heptonstall A; Hough J; Rowan S; Strain KA
    Rev Sci Instrum; 2011 Apr; 82(4):044502. PubMed ID: 21529026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential phase-noise properties of a ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna.
    Tröbs M; Barke S; Theeg T; Kracht D; Heinzel G; Danzmann K
    Opt Lett; 2010 Feb; 35(3):435-7. PubMed ID: 20125746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon-noise-limited laser transducer for gravitational antenna.
    Moss GE; Miller LR; Forward RL
    Appl Opt; 1971 Nov; 10(11):2495-8. PubMed ID: 20111362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energy-efficient micropower neural recording amplifier.
    Wattanapanitch W; Fee M; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):136-47. PubMed ID: 23851668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Readout and control of a power-recycled interferometric gravitational-wave antenna.
    Fritschel P; Bork R; González G; Mavalvala N; Ouimette D; Rong H; Sigg D; Zucker M
    Appl Opt; 2001 Oct; 40(28):4988-98. PubMed ID: 18364777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.