These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25430134)

  • 1. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range.
    Lin T; Zhang Y; Lee YH; Krause HJ; Lin J; Zhao J
    Rev Sci Instrum; 2014 Nov; 85(11):114708. PubMed ID: 25430134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Usoskin A
    Rev Sci Instrum; 2007 May; 78(5):054701. PubMed ID: 17552846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Rigid One-Meter-Side and Cooled Coil Sensor at 77 K for Magnetic Resonance Sounding to Detect Subsurface Water Sources.
    Lin J; Du G; Zhang J; Yi X; Jiang C; Lin T
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring on the Sensitivity Changes of the
    Lin T; Zhou K; Yu S; Wang P; Wan L; Zhao J
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693644
    [No Abstract]   [Full Text] [Related]  

  • 8. Detection of NMR signals with a radio-frequency atomic magnetometer.
    Savukov IM; Seltzer SJ; Romalis MV
    J Magn Reson; 2007 Apr; 185(2):214-20. PubMed ID: 17208476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-field NMR measurement procedure when SQUID detection is used.
    Qiu L; Zhang Y; Krause HJ; Braginski AI; Offenhäusser A
    J Magn Reson; 2009 Feb; 196(2):101-4. PubMed ID: 19028121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.
    Augustine MP; TonThat DM; Clarke J
    Solid State Nucl Magn Reson; 1998 Mar; 11(1-2):139-56. PubMed ID: 9650797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples.
    Huber ME; Koshnick NC; Bluhm H; Archuleta LJ; Azua T; Björnsson PG; Gardner BW; Halloran ST; Lucero EA; Moler KA
    Rev Sci Instrum; 2008 May; 79(5):053704. PubMed ID: 18513072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband SQUID NMR with room-temperature samples.
    Kumar S; Thorson BD; Avrin WF
    J Magn Reson B; 1995 Jun; 107(3):252-9. PubMed ID: 7788098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flat RF coils in static field gradient nuclear magnetic resonance.
    Stork H; Gädke A; Nestle N; Fujara F
    J Magn Reson; 2009 Oct; 200(2):321-7. PubMed ID: 19683951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoliter volume, high-resolution NMR microspectroscopy using a 60-micron planar microcoil.
    Stocker JE; Peck TL; Webb AG; Feng M; Magin RL
    IEEE Trans Biomed Eng; 1997 Nov; 44(11):1122-7. PubMed ID: 9353992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconducting Quantum Interferometers for Nondestructive Evaluation.
    Faley MI; Kostyurina EA; Kalashnikov KV; Maslennikov YV; Koshelets VP; Dunin-Borkowski RE
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles.
    Kandori A; Ogata K; Kawabata R; Tanimoto S; Seki Y
    Rev Sci Instrum; 2012 Jul; 83(7):076108. PubMed ID: 22852743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.
    Volegov P; Matlachov AN; Espy MA; George JS; Kraus RH
    Magn Reson Med; 2004 Sep; 52(3):467-70. PubMed ID: 15334563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single bead detection with an NMR microcapillary probe.
    Nakashima Y; Boss M; Russek SE; Moreland J
    J Magn Reson; 2012 Nov; 224():71-7. PubMed ID: 23041798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation damping and reciprocity in nuclear magnetic resonance: the replacement of the filling factor.
    Tropp J; Van Criekinge M
    J Magn Reson; 2010 Sep; 206(1):161-7. PubMed ID: 20615733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.
    Ginefri JC; Poirier-Quinot M; Girard O; Darrasse L
    Methods; 2007 Sep; 43(1):54-67. PubMed ID: 17720564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.