BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25430673)

  • 1. Porous coordination polymers of diverse topologies based on a twisted tetrapyridylbiaryl: application as nucleophilic catalysts for acetylation of phenols.
    Seth S; Venugopalan P; Moorthy JN
    Chemistry; 2015 Jan; 21(5):2241-9. PubMed ID: 25430673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrene Carboxylate Ligand Based Coordination Polymers for Microwave-Assisted Solvent-Free Cyanosilylation of Aldehydes.
    Karmakar A; Paul A; Sabatini EP; Guedes da Silva MFC; Pombeiro AJL
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation.
    Huang Y; Liu T; Lin J; Lü J; Lin Z; Cao R
    Inorg Chem; 2011 Mar; 50(6):2191-8. PubMed ID: 21332212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.
    Li H; Xu B; He J; Liu X; Gao W; Mu Y
    Chem Commun (Camb); 2015 Dec; 51(93):16703-6. PubMed ID: 26435011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of metal-organic coordination polymers constructed from a bent dicarboxylate ligand: diversity of coordination modes, structures, and gas adsorption.
    Yang W; Lin X; Blake AJ; Wilson C; Hubberstey P; Champness NR; Schröder M
    Inorg Chem; 2009 Dec; 48(23):11067-78. PubMed ID: 19943692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity.
    Lan YQ; Li SL; Fu YM; Xu YH; Li L; Su ZM; Fu Q
    Dalton Trans; 2008 Dec; (47):6796-807. PubMed ID: 19153627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional porous organic polymers for heterogeneous catalysis.
    Zhang Y; Riduan SN
    Chem Soc Rev; 2012 Mar; 41(6):2083-94. PubMed ID: 22134621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of conformational flexibility on self-assembly and luminescence properties of lanthanide coordination polymers with flexible exo-bidentate biphenol derivatives.
    Guo Y; Dou W; Zhou X; Liu W; Qin W; Zang Z; Zhang H; Wang D
    Inorg Chem; 2009 Apr; 48(8):3581-90. PubMed ID: 19290612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of 3D coordination polymers from 2D sheets by [2+2] cycloaddition reaction.
    Medishetty R; Tandiana R; Koh LL; Vittal JJ
    Chemistry; 2014 Jan; 20(5):1231-6. PubMed ID: 24382684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal-Organic Frameworks.
    Aijaz A; Xu Q
    J Phys Chem Lett; 2014 Apr; 5(8):1400-11. PubMed ID: 26269986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.
    Dai F; Dou J; He H; Zhao X; Sun D
    Inorg Chem; 2010 May; 49(9):4117-24. PubMed ID: 20380447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous polymers based on aryleneethynylene building blocks.
    Bunz UH; Seehafer K; Geyer FL; Bender M; Braun I; Smarsly E; Freudenberg J
    Macromol Rapid Commun; 2014 Sep; 35(17):1466-96. PubMed ID: 25123376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing anion-pi interactions in 1-D Co(II), Ni(II), and Cd(II) coordination polymers containing flexible pyrazine ligands.
    Black CA; Hanton LR; Spicer MD
    Inorg Chem; 2007 Apr; 46(9):3669-79. PubMed ID: 17362001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks with functional pores for recognition of small molecules.
    Chen B; Xiang S; Qian G
    Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggering Lewis Acidic Nature through the Variation of Coordination Environment of Cd-Centers in 2D-Coordination Polymers.
    Kumar N; Paul AK
    Inorg Chem; 2020 Jan; 59(2):1284-1294. PubMed ID: 31916441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Structure, and Ligand-Centered Catalytic Properties of M
    Cheng JY; Ding FW; Wang P; Zhao CW; Dong YB
    Chempluschem; 2016 Aug; 81(8):743-751. PubMed ID: 31968843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable assembly of metal-directed coordination polymers under diverse conditions: a case study of the M(II)-H3tma/Bpt mixed-ligand system.
    Du M; Jiang XJ; Zhao XJ
    Inorg Chem; 2006 May; 45(10):3998-4006. PubMed ID: 16676960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six Zn(II) and Cd(II) coordination polymers assembled from a similar binuclear building unit: tunable structures and luminescence properties.
    Zhang L; Rong L; Hu G; Jin S; Jia WG; Liu J; Yuan G
    Dalton Trans; 2015 Apr; 44(15):6731-9. PubMed ID: 25601297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.