BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25431092)

  • 1. Rehabilitation exercise assessment using inertial sensors: a cross-sectional analytical study.
    Giggins OM; Sweeney KT; Caulfield B
    J Neuroeng Rehabil; 2014 Nov; 11():158. PubMed ID: 25431092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee.
    Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Mar; 56(2):88-94. PubMed ID: 27782290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of inertial sensors for the classification of rehabilitation exercises.
    Giggins O; Sweeney KT; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2965-8. PubMed ID: 25570613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems.
    Brennan L; Bevilacqua A; Kechadi T; Caulfield B
    J Rehabil Assist Technol Eng; 2020; 7():2055668320915377. PubMed ID: 32913661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Oct; 56(5):361-369. PubMed ID: 28612890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch.
    Burns DM; Leung N; Hardisty M; Whyne CM; Henry P; McLachlin S
    Physiol Meas; 2018 Jul; 39(7):075007. PubMed ID: 29952759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rehabilitation Exercise Segmentation for Autonomous Biofeedback Systems with ConvFSM.
    Bevilacqua A; Brennan L; Argent R; Caulfield B; Kechadi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():574-579. PubMed ID: 31945964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limb movement analysis of rehabilitation exercises using wearable inertial sensors.
    Bingquan Huang ; Giggins O; Kechadi T; Caulfield B
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4686-4689. PubMed ID: 28269318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning model for classifying shoulder pain rehabilitation exercises using IMU sensor.
    Lee K; Kim JH; Hong H; Jeong Y; Ryu H; Kim H; Lee SU
    J Neuroeng Rehabil; 2024 Mar; 21(1):42. PubMed ID: 38539223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout.
    Preatoni E; Nodari S; Lopomo NF
    Front Bioeng Biotechnol; 2020; 8():664. PubMed ID: 32733863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of wearable technology for performance assessment: a validation study.
    Papi E; Osei-Kuffour D; Chen YM; McGregor AH
    Med Eng Phys; 2015 Jul; 37(7):698-704. PubMed ID: 25937613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and validation of using inertial sensors to monitor postural change in resistance exercise.
    Gleadhill S; Lee JB; James D
    J Biomech; 2016 May; 49(7):1259-1263. PubMed ID: 27038542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach.
    Lee J; Joo H; Lee J; Chee Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial Sensors are a Valid Tool to Detect and Consistently Quantify Jumping.
    Spangler R; Rantalainen T; Gastin PB; Wundersitz D
    Int J Sports Med; 2018 Oct; 39(10):802-808. PubMed ID: 30025420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis.
    Chen KH; Chen PC; Liu KC; Chan CT
    Sensors (Basel); 2015 Feb; 15(2):4193-211. PubMed ID: 25686308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can we use accelerometry to monitor balance exercise performance in older adults?
    Tung JY; Ng H; Moore C; Giangregorio L
    Gait Posture; 2014 Mar; 39(3):991-4. PubMed ID: 24360637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.