These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25431186)

  • 21. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish.
    Tebby C; Mombelli E; Pandard P; Péry AR
    Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents.
    Levet A; Bordes C; Clément Y; Mignon P; Chermette H; Marote P; Cren-Olivé C; Lantéri P
    Chemosphere; 2013 Oct; 93(6):1094-103. PubMed ID: 23866172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata.
    Aruoja V; Moosus M; Kahru A; Sihtmäe M; Maran U
    Chemosphere; 2014 Feb; 96():23-32. PubMed ID: 23895738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Creation of predictive models of aquatic toxicity of environmental pollutants with different mechanisms of action on the basis of molecular similarity and HYBOT descriptors.
    Raevsky OA; Dearden JC
    SAR QSAR Environ Res; 2004; 15(5-6):433-48. PubMed ID: 15669700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata).
    Ding G; Wouterse M; Baerselman R; Peijnenburg WJ
    Arch Environ Contam Toxicol; 2012 Jan; 62(1):49-55. PubMed ID: 21626016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods.
    Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz).
    McDonald SF; Hamilton SJ; Buhl KJ; Heisinger JF
    Ecotoxicol Environ Saf; 1996 Feb; 33(1):62-72. PubMed ID: 8744925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
    Cassotti M; Ballabio D; Todeschini R; Consonni V
    SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships.
    Schultz TW; Cronin MT
    Environ Toxicol Chem; 2003 Mar; 22(3):599-607. PubMed ID: 12627648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using membrane-water partition coefficients in a critical membrane burden approach to aid the identification of neutral and ionizable chemicals that induce acute toxicity below narcosis levels.
    Droge STJ; Hodges G; Bonnell M; Gutsell S; Roberts J; Teixeira A; Barrett EL
    Environ Sci Process Impacts; 2023 Mar; 25(3):621-647. PubMed ID: 36779707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QSAR Study on tadpole narcosis.
    Agrawal VK; Chaturvedi S; Abraham MH; Khadikar PV
    Bioorg Med Chem; 2003 Oct; 11(20):4523-33. PubMed ID: 13129588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.
    Wang T; Zhang X; Tian D; Gao Y; Lin Z; Liu Y; Kong L
    Environ Toxicol Pharmacol; 2015 Nov; 40(3):948-53. PubMed ID: 26520250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.