These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

881 related articles for article (PubMed ID: 25431262)

  • 1. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells.
    Yu C; Xue J; Zhu W; Jiao Y; Zhang S; Cao J
    Tumour Biol; 2015 Jan; 36(1):81-94. PubMed ID: 25431262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-coding RNAs in the reprogramming of glucose metabolism in cancer.
    Shankaraiah RC; Veronese A; Sabbioni S; Negrini M
    Cancer Lett; 2018 Apr; 419():167-174. PubMed ID: 29366802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-coding RNAs: Key regulators of aerobic glycolysis in breast cancer.
    Xia M; Feng S; Chen Z; Wen G; Zu X; Zhong J
    Life Sci; 2020 Jun; 250():117579. PubMed ID: 32209425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The emerging regulatory roles of non-coding RNAs associated with glucose metabolism in breast cancer.
    Kansara S; Singh A; Badal AK; Rani R; Baligar P; Garg M; Pandey AK
    Semin Cancer Biol; 2023 Oct; 95():1-12. PubMed ID: 37364663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect.
    Mirzaei H; Hamblin MR
    Mol Ther Oncolytics; 2020 Dec; 19():218-239. PubMed ID: 33251334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Warburg effect: the metabolic requirements of cell proliferation.
    Vander Heiden MG; Cantley LC; Thompson CB
    Science; 2009 May; 324(5930):1029-33. PubMed ID: 19460998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of aerobic glycolysis by long non-coding RNAs in cancer.
    Kong XZ; Hu SS; Sun Z; Zuo LH; Kang J; Zhu ZF; Tian X; Zhang XJ
    Biochem Biophys Res Commun; 2016 Oct; 479(1):28-32. PubMed ID: 27596968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular profile of non-coding RNA-mediated glycolysis control in human cancers.
    Mirzaei S; Ranjbar B; Tackallou SH
    Pathol Res Pract; 2023 Aug; 248():154708. PubMed ID: 37536019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pivotal role of MicroRNAs in glucose metabolism in cancer.
    Taefehshokr S; Taefehshokr N; Hemmat N; Hajazimian S; Isazadeh A; Dadebighlu P; Baradaran B
    Pathol Res Pract; 2021 Jan; 217():153314. PubMed ID: 33341548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of long non-coding RNAs in glucose metabolism in cancer.
    Fan C; Tang Y; Wang J; Xiong F; Guo C; Wang Y; Zhang S; Gong Z; Wei F; Yang L; He Y; Zhou M; Li X; Li G; Xiong W; Zeng Z
    Mol Cancer; 2017 Jul; 16(1):130. PubMed ID: 28738810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-coding RNAs derailed: The many influences on the fatty acid reprogramming of cancer.
    Yu XH; Wang HF; Wu JB; Wang SS; Tang YJ; Tang YL; Liang XH
    Life Sci; 2019 Aug; 231():116509. PubMed ID: 31152812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose Addiction in Cancer Therapy: Advances and Drawbacks.
    Granja S; Pinheiro C; Reis RM; Martinho O; Baltazar F
    Curr Drug Metab; 2015; 16(3):221-42. PubMed ID: 26504932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More Than Meets the Eye Regarding Cancer Metabolism.
    Kubicka A; Matczak K; Łabieniec-Watała M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction to the molecular basis of cancer metabolism and the Warburg effect.
    Ngo DC; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):819-23. PubMed ID: 25672512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drivers of the Warburg phenotype.
    Cairns RA
    Cancer J; 2015; 21(2):56-61. PubMed ID: 25815844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles of non-coding RNAs in the metabolic reprogramming of tumor-associated macrophages.
    Li J; Lu Z; Zhang Y; Xia L; Su Z
    Immunol Lett; 2021 Apr; 232():27-34. PubMed ID: 33577913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the complex regulatory relationships between metabolism and signal transduction in cancer.
    Wynn ML; Merajver SD; Schnell S
    Adv Exp Med Biol; 2012; 736():179-89. PubMed ID: 22161328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.