BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25431302)

  • 1. CAR: contig assembly of prokaryotic draft genomes using rearrangements.
    Lu CL; Chen KT; Huang SY; Chiu HT
    BMC Bioinformatics; 2014 Nov; 15(1):381. PubMed ID: 25431302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
    Chen KT; Lu CL
    Nucleic Acids Res; 2018 Jul; 46(W1):W55-W59. PubMed ID: 29733393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIS: a program to generate draft genome sequence scaffolds for prokaryotes.
    Dias Z; Dias U; Setubal JC
    BMC Bioinformatics; 2012 May; 13():96. PubMed ID: 22583530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements.
    Chen KT; Shen HT; Lu CL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):139. PubMed ID: 30598087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembling contigs in draft genomes using reversals and block-interchanges.
    Li CL; Chen KT; Lu CL
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S9. PubMed ID: 23734866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-CSAR: a web server for scaffolding contigs using multiple reference genomes.
    Liu SC; Ju YR; Lu CL
    Nucleic Acids Res; 2022 Jul; 50(W1):W500-W509. PubMed ID: 35524553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences.
    Tamazian G; Dobrynin P; Krasheninnikova K; Komissarov A; Koepfli KP; O'Brien SJ
    Gigascience; 2016 Aug; 5(1):38. PubMed ID: 27549770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly reconciliation.
    Zimin AV; Smith DR; Sutton G; Yorke JA
    Bioinformatics; 2008 Jan; 24(1):42-5. PubMed ID: 18057021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PGAAS: a prokaryotic genome assembly assistant system.
    Yu Z; Li T; Zhao J; Luo J
    Bioinformatics; 2002 May; 18(5):661-5. PubMed ID: 12050061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
    Swain MT; Tsai IJ; Assefa SA; Newbold C; Berriman M; Otto TD
    Nat Protoc; 2012 Jun; 7(7):1260-84. PubMed ID: 22678431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Misassembly detection using paired-end sequence reads and optical mapping data.
    Muggli MD; Puglisi SJ; Ronen R; Boucher C
    Bioinformatics; 2015 Jun; 31(12):i80-8. PubMed ID: 26072512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.
    Jiang Y; Ninwichian P; Liu S; Zhang J; Kucuktas H; Sun F; Kaltenboeck L; Sun L; Bao L; Liu Z
    PLoS One; 2013; 8(10):e78872. PubMed ID: 24205335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical scaffolding with Bambus.
    Pop M; Kosack DS; Salzberg SL
    Genome Res; 2004 Jan; 14(1):149-59. PubMed ID: 14707177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OSLay: optimal syntenic layout of unfinished assemblies.
    Richter DC; Schuster SC; Huson DH
    Bioinformatics; 2007 Jul; 23(13):1573-9. PubMed ID: 17463020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient algorithm for the contig ordering problem under algebraic rearrangement distance.
    Lu CL
    J Comput Biol; 2015 Nov; 22(11):975-87. PubMed ID: 26247343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of the working draft of the human genome with GigAssembler.
    Kent WJ; Haussler D
    Genome Res; 2001 Sep; 11(9):1541-8. PubMed ID: 11544197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.