These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25431507)

  • 1. PREDICTION INTERVALS FOR INTEGRALS OF GAUSSIAN RANDOM FIELDS.
    De Oliveira V; Kone B
    Comput Stat Data Anal; 2015 Mar; 83():37-51. PubMed ID: 25431507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geostatistical modeling of the spatial distribution of soil dioxin in the vicinity of an incinerator. 2. Verification and calibration study.
    Goovaerts P; Trinh HT; Demond AH; Towey T; Chang SC; Gwinn D; Hong B; Franzblau A; Garabrant D; Gillespie BW; Lepkowski J; Adriaens P
    Environ Sci Technol; 2008 May; 42(10):3655-61. PubMed ID: 18546704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction bands and intervals for the scapulo-humeral coordination based on the Bootstrap and two Gaussian methods.
    Cutti AG; Parel I; Raggi M; Petracci E; Pellegrini A; Accardo AP; Sacchetti R; Porcellini G
    J Biomech; 2014 Mar; 47(5):1035-44. PubMed ID: 24485513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does Poisson kriging compare to the popular BYM model for mapping disease risks?
    Goovaerts P; Gebreab S
    Int J Health Geogr; 2008 Feb; 7():6. PubMed ID: 18248676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping soil gas radon concentration: a comparative study of geostatistical methods.
    Buttafuoco G; Tallarico A; Falcone G
    Environ Monit Assess; 2007 Aug; 131(1-3):135-51. PubMed ID: 17242970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely randomized neural networks for constructing prediction intervals.
    Mancini T; Calvo-Pardo H; Olmo J
    Neural Netw; 2021 Dec; 144():113-128. PubMed ID: 34487958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confidence intervals of prediction accuracy measures for multivariable prediction models based on the bootstrap-based optimism correction methods.
    Noma H; Shinozaki T; Iba K; Teramukai S; Furukawa TA
    Stat Med; 2021 Nov; 40(26):5691-5701. PubMed ID: 34302372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.].
    Wu WM; Wang JQ; Cao Q; Wu JP
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):439-448. PubMed ID: 29749151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches.
    Singh A; Santra P; Kumar M; Panwar N; Meghwal PR
    Environ Monit Assess; 2016 Sep; 188(9):529. PubMed ID: 27553943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of Gaussian geostatistical models and Gaussian Markov random field models1.
    Song HR; Fuentes M; Ghosh S
    J Multivar Anal; 2008 Sep; 99(8):1681-1697. PubMed ID: 19337581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
    Kurashige Y; Nakajima T; Hirao K
    J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Application of Spatio-temporal Modeling to Finite Population Abundance Prediction.
    Higham M; Dumelle M; Hammond C; Ver Hoef J; Wells J
    J Agric Biol Environ Stat; 2023 Aug; 28(3):1-25. PubMed ID: 37844016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution and risk area assessment of
    Mondal S; Khan MR; Mukherjee A
    J Nematol; 2020; 52():1-16. PubMed ID: 32323933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining geostatistics and simulations of flow and transport to characterize contamination within the unsaturated zone.
    Pannecoucke L; Le Coz M; Freulon X; de Fouquet C
    Sci Total Environ; 2020 Jan; 699():134216. PubMed ID: 33736190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction intervals for overdispersed binomial data with application to historical controls.
    Menssen M; Schaarschmidt F
    Stat Med; 2019 Jun; 38(14):2652-2663. PubMed ID: 30835886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-fidelity modelling via recursive co-kriging and Gaussian-Markov random fields.
    Perdikaris P; Venturi D; Royset JO; Karniadakis GE
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150018. PubMed ID: 26345079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential sampling and Bayesian geostatistics: Statistical modeling and examples.
    Cecconi L; Grisotto L; Catelan D; Lagazio C; Berrocal V; Biggeri A
    Stat Methods Med Res; 2016 Aug; 25(4):1224-43. PubMed ID: 27566774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geostatistical mapping of precipitation: implications for rain gauge network design.
    Nour MH; Smit DW; Gamal El-Din M
    Water Sci Technol; 2006; 53(10):101-10. PubMed ID: 16838694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances.
    Lin YP; Chu HJ; Wang CL; Yu HH; Wang YC
    Sensors (Basel); 2009; 9(1):148-74. PubMed ID: 22389593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.