These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 25431894)
1. Fletching-shaped Bi4Te3–ZnTe heterostructure nanowires. Song MS; Kim Y Nanotechnology; 2014 Dec; 25(50):505605. PubMed ID: 25431894 [TBL] [Abstract][Full Text] [Related]
2. Structure and morphology in diffusion-driven growth of nanowires: the case of ZnTe. Rueda-Fonseca P; Bellet-Amalric E; Vigliaturo R; den Hertog M; Genuist Y; André R; Robin E; Artioli A; Stepanov P; Ferrand D; Kheng K; Tatarenko S; Cibert J Nano Lett; 2014; 14(4):1877-83. PubMed ID: 24564275 [TBL] [Abstract][Full Text] [Related]
3. Wurtzite ZnTe Nanotrees and Nanowires on Fluorine-Doped Tin Oxide Glass Substrates. Song MS; Choi SB; Kim Y Nano Lett; 2017 Jul; 17(7):4365-4372. PubMed ID: 28654296 [TBL] [Abstract][Full Text] [Related]
4. Near-infrared emission from spatially indirect excitons in type II ZnTe/CdSe/(Zn,Mg)Te core/double-shell nanowires. Wojnar P; Płachta J; Reszka A; Lähnemann J; Kaleta A; Kret S; Baranowski P; Wójcik M; Kowalski BJ; Baczewski LT; Karczewski G; Wojtowicz T Nanotechnology; 2021 Sep; 32(49):. PubMed ID: 34438391 [TBL] [Abstract][Full Text] [Related]
5. Activation of an intense near band edge emission from ZnTe/ZnMgTe core/shell nanowires grown on silicon. Wojnar P; Szymura M; Zaleszczyk W; Kłopotowski L; Janik E; Wiater M; Baczewski LT; Kret S; Karczewski G; Kossut J; Wojtowicz T Nanotechnology; 2013 Sep; 24(36):365201. PubMed ID: 23960005 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of MBE-Grown ZnTe and ZnTe/Zn Nanowires and Their Structural Properties. Gas K; Kret S; Zaleszczyk W; Kamińska E; Sawicki M; Wojtowicz T; Szuszkiewicz W Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576476 [TBL] [Abstract][Full Text] [Related]
8. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures. Sun Y; Zhao Q; Gao J; Ye Y; Wang W; Zhu R; Xu J; Chen L; Yang J; Dai L; Liao ZM; Yu D Nanoscale; 2011 Oct; 3(10):4418-26. PubMed ID: 21931901 [TBL] [Abstract][Full Text] [Related]
9. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires. Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853 [TBL] [Abstract][Full Text] [Related]
10. ZnTe-ZnO core-shell radial heterostructures grown by the combination of molecular beam epitaxy and atomic layer deposition. Janik E; Wachnicka A; Guziewicz E; Godlewski M; Kret S; Zaleszczyk W; Dynowska E; Presz A; Karczewski G; Wojtowicz T Nanotechnology; 2010 Jan; 21(1):015302. PubMed ID: 19946158 [TBL] [Abstract][Full Text] [Related]
11. Solution-liquid-solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. Dong A; Wang F; Daulton TL; Buhro WE Nano Lett; 2007 May; 7(5):1308-13. PubMed ID: 17388642 [TBL] [Abstract][Full Text] [Related]
12. Thermal conductivity of a single Bi₀.₅Sb₁.₅Te₃ single-crystalline nanowire. Li L; Jin C; Xu S; Yang J; Du H; Li G Nanotechnology; 2014 Oct; 25(41):415704. PubMed ID: 25249271 [TBL] [Abstract][Full Text] [Related]
13. Sn-doped bismuth telluride nanowires with high conductivity. Mi G; Li L; Zhang Y; Zheng G Nanoscale; 2012 Oct; 4(20):6276-8. PubMed ID: 22990308 [TBL] [Abstract][Full Text] [Related]
14. Thermal breakdown of ZnTe nanowires. Davami K; Ghassemi HM; Yassar RS; Lee JS; Meyyappan M Chemphyschem; 2012 Jan; 13(1):347-52. PubMed ID: 22131283 [TBL] [Abstract][Full Text] [Related]
15. Tuning the crystallinity of thermoelectric Bi(2)Te(3) nanowire arrays grown by pulsed electrodeposition. Lee J; Farhangfar S; Lee J; Cagnon L; Scholz R; Gösele U; Nielsch K Nanotechnology; 2008 Sep; 19(36):365701. PubMed ID: 21828882 [TBL] [Abstract][Full Text] [Related]
16. In-situ phosphrous doping in ZnTe nanowires with enhanced p-type conductivity. Cao YL; Liu ZT; Chen LM; Tang YB; Luo LB; Lee ST; Lee CS J Nanosci Nanotechnol; 2012 Mar; 12(3):2353-9. PubMed ID: 22755058 [TBL] [Abstract][Full Text] [Related]
17. Disproportionation of thermoelectric bismuth telluride nanowires as a result of the annealing process. Lee J; Berger A; Cagnon L; Gösele U; Nielsch K; Lee J Phys Chem Chem Phys; 2010 Dec; 12(46):15247-50. PubMed ID: 21046022 [TBL] [Abstract][Full Text] [Related]
18. Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires. Jung M; Song W; Sung Lee J; Kim N; Kim J; Park J; Lee H; Hirakawa K Nanotechnology; 2008 Dec; 19(49):495702. PubMed ID: 21730682 [TBL] [Abstract][Full Text] [Related]
19. Electronic and magnetic properties of pristine and transition metal doped ZnTe nanowires. Mukherjee P; Gupta BC; Jena P J Phys Condens Matter; 2013 Jul; 25(26):266003. PubMed ID: 23756471 [TBL] [Abstract][Full Text] [Related]