These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 25431946)

  • 61. Outside in: The matrix as a modifier of muscular dystrophy.
    Quattrocelli M; Spencer MJ; McNally EM
    Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):572-579. PubMed ID: 28011285
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Epigenetic-based therapies in the preclinical and clinical treatment of Huntington's disease.
    Valor LM
    Int J Biochem Cell Biol; 2015 Oct; 67():45-8. PubMed ID: 25936670
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Duchenne muscular dystrophy: Focus on arachidonic acid metabolites.
    Hoxha M
    Biomed Pharmacother; 2019 Feb; 110():796-802. PubMed ID: 30554118
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle.
    Rybalka E; Timpani CA; Debruin DA; Bagaric RM; Campelj DG; Hayes A
    Cells; 2020 Dec; 9(12):. PubMed ID: 33322031
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Epigenetic modulation with histone deacetylase inhibitors in combination with immunotherapy.
    Park J; Thomas S; Munster PN
    Epigenomics; 2015; 7(4):641-52. PubMed ID: 26111034
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Discovery of YSR734: A Covalent HDAC Inhibitor with Cellular Activity in Acute Myeloid Leukemia and Duchenne Muscular Dystrophy.
    Raouf YS; Sedighi A; Geletu M; Frere GA; Allan RG; Nawar N; de Araujo ED; Gunning PT
    J Med Chem; 2023 Dec; 66(24):16658-16679. PubMed ID: 38060537
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Duchenne muscular dystrophy: clinical trials and emerging tribulations.
    Shieh PB
    Curr Opin Neurol; 2015 Oct; 28(5):542-6. PubMed ID: 26280938
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Epigenetic regulation of motivated behaviors by histone deacetylase inhibitors.
    Elvir L; Duclot F; Wang Z; Kabbaj M
    Neurosci Biobehav Rev; 2019 Oct; 105():305-317. PubMed ID: 29020607
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gene regulation networks in early phase of Duchenne muscular dystrophy.
    Bernardini C; Censi F; Lattanzi W; Calcagnini G; Giuliani A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):393-400. PubMed ID: 23929863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies.
    Cappellari O; Mantuano P; De Luca A
    Cells; 2020 Jul; 9(7):. PubMed ID: 32660168
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Elevated H3K27ac in aged skeletal muscle leads to increase in extracellular matrix and fibrogenic conversion of muscle satellite cells.
    Zhou J; So KK; Li Y; Li Y; Yuan J; Ding Y; Chen F; Huang Y; Liu J; Lee W; Li G; Ju Z; Sun H; Wang H
    Aging Cell; 2019 Oct; 18(5):e12996. PubMed ID: 31325224
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhancement of Satellite Cell Transplantation Efficiency by Leukemia Inhibitory Factor.
    Ito N; Shimizu N; Tanaka H; Takeda S
    J Neuromuscul Dis; 2016 May; 3(2):201-207. PubMed ID: 27854222
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Therapeutic advances in muscular dystrophy.
    Leung DG; Wagner KR
    Ann Neurol; 2013 Sep; 74(3):404-11. PubMed ID: 23939629
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells.
    Ryall JG; Dell'Orso S; Derfoul A; Juan A; Zare H; Feng X; Clermont D; Koulnis M; Gutierrez-Cruz G; Fulco M; Sartorelli V
    Cell Stem Cell; 2015 Feb; 16(2):171-83. PubMed ID: 25600643
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy.
    Ichim TE; Alexandrescu DT; Solano F; Lara F; Campion Rde N; Paris E; Woods EJ; Murphy MP; Dasanu CA; Patel AN; Marleau AM; Leal A; Riordan NH
    Cell Immunol; 2010; 260(2):75-82. PubMed ID: 19917503
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Clinical and experimental applications of sodium phenylbutyrate.
    Iannitti T; Palmieri B
    Drugs R D; 2011 Sep; 11(3):227-49. PubMed ID: 21902286
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration.
    Massenet J; Gardner E; Chazaud B; Dilworth FJ
    Skelet Muscle; 2021 Jan; 11(1):4. PubMed ID: 33431060
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Quest for the Prediction of Steroid Responsiveness in Duchenne Muscular Dystrophy.
    Suthar R; Sahu JK
    Indian J Pediatr; 2020 Sep; 87(9):682-683. PubMed ID: 32519261
    [No Abstract]   [Full Text] [Related]  

  • 79. Effect of the Histone Deacetylases Inhibitors on the Differentiation of Stem Cells in Bone Damage Repairing and Regeneration.
    Zhao Q; Ji K; Wang T; Li G; Lu W; Ji J
    Curr Stem Cell Res Ther; 2020; 15(1):24-31. PubMed ID: 31486757
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Muscle-specific microRNAs as biomarkers of Duchenne Muscular Dystrophy progression and response to therapies.
    Giordani L; SandonĂ¡ M; Rotini A; Puri PL; Consalvi S; Saccone V
    Rare Dis; 2014; 2(1):e974969. PubMed ID: 26942105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.