These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25432029)

  • 1. Creation of orbital angular momentum states with chiral polaritonic lenses.
    Dall R; Fraser MD; Desyatnikov AS; Li G; Brodbeck S; Kamp M; Schneider C; Höfling S; Ostrovskaya EA
    Phys Rev Lett; 2014 Nov; 113(20):200404. PubMed ID: 25432029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Transfer of Light's Orbital Angular Momentum onto a Nonresonantly Excited Polariton Superfluid.
    Kwon MS; Oh BY; Gong SH; Kim JH; Kang HK; Kang S; Song JD; Choi H; Cho YH
    Phys Rev Lett; 2019 Feb; 122(4):045302. PubMed ID: 30768308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Ordering of Topological Charges in an Exciton-Polariton Chain.
    Gao T; Egorov OA; Estrecho E; Winkler K; Kamp M; Schneider C; Höfling S; Truscott AG; Ostrovskaya EA
    Phys Rev Lett; 2018 Nov; 121(22):225302. PubMed ID: 30547627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity.
    Xiong Z; Wu H; Cai Y; Zhai X; Liu T; Li B; Song T; Guo L; Liu Z; Dong Y; Liu P; Ren Y
    Nano Lett; 2024 Apr; 24(16):4959-64. PubMed ID: 38620069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically Driven Rotation of Exciton-Polariton Condensates.
    Del Valle-Inclan Redondo Y; Schneider C; Klembt S; Höfling S; Tarucha S; Fraser MD
    Nano Lett; 2023 May; 23(10):4564-4571. PubMed ID: 37129463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically Controlled Orbital Angular Momentum Generation in a Polaritonic Quantum Fluid.
    Luk SMH; Kwong NH; Lewandowski P; Schumacher S; Binder R
    Phys Rev Lett; 2017 Sep; 119(11):113903. PubMed ID: 28949243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.
    Al-Jarro A; Biris CG; Panoiu NC
    Opt Express; 2016 Apr; 24(7):6945-58. PubMed ID: 27136989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of interactions on vortices in a nonequilibrium polariton condensate.
    Krizhanovskii DN; Whittaker DM; Bradley RA; Guda K; Sarkar D; Sanvitto D; Vina L; Cerda E; Santos P; Biermann K; Hey R; Skolnick MS
    Phys Rev Lett; 2010 Mar; 104(12):126402. PubMed ID: 20366553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids.
    Gao T; Li G; Estrecho E; Liew TCH; Comber-Todd D; Nalitov A; Steger M; West K; Pfeiffer L; Snoke DW; Kavokin AV; Truscott AG; Ostrovskaya EA
    Phys Rev Lett; 2018 Feb; 120(6):065301. PubMed ID: 29481285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities.
    Wang J; Xu H; Su R; Peng Y; Wu J; Liew TCH; Xiong Q
    Light Sci Appl; 2021 Mar; 10(1):45. PubMed ID: 33649295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-skyrmions with higher topological quantum numbers in homogeneous exciton-polariton condensates.
    Cheng SC; Jheng SD; Chen TW
    Phys Rev E; 2021 Nov; 104(5-1):054216. PubMed ID: 34942800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantized rotation of atoms from photons with orbital angular momentum.
    Andersen MF; Ryu C; Cladé P; Natarajan V; Vaziri A; Helmerson K; Phillips WD
    Phys Rev Lett; 2006 Oct; 97(17):170406. PubMed ID: 17155450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous symmetry breaking in persistent currents of spinor polaritons.
    Sedov E; Arakelian S; Kavokin A
    Sci Rep; 2021 Nov; 11(1):22382. PubMed ID: 34789817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous circulation in ground-state spinor dipolar Bose-Einstein condensates.
    Kawaguchi Y; Saito H; Ueda M
    Phys Rev Lett; 2006 Sep; 97(13):130404. PubMed ID: 17026015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of optical vortices by exciton polaritons in pillar semiconductor microcavities.
    Abdalla AS; Zou B; Ren Y; Liu T; Zhang Y
    Opt Express; 2018 Aug; 26(17):22273-22283. PubMed ID: 30130922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polariton Bose-Einstein condensate at room temperature in an Al(Ga)N nanowire-dielectric microcavity with a spatial potential trap.
    Das A; Bhattacharya P; Heo J; Banerjee A; Guo W
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2735-40. PubMed ID: 23382183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation and Manipulation of Stable Dark Solitons and Vortices in Microcavity Polariton Condensates.
    Ma X; Egorov OA; Schumacher S
    Phys Rev Lett; 2017 Apr; 118(15):157401. PubMed ID: 28452514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Einstein-de Haas effect in a rubidium condensate.
    Gawryluk K; Brewczyk M; Bongs K; Gajda M
    Phys Rev Lett; 2007 Sep; 99(13):130401. PubMed ID: 17930558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Controlling Vortices in a Neutral Exciton-Polariton Condensate at Room Temperature.
    Zhai X; Ma X; Gao Y; Xing C; Gao M; Dai H; Wang X; Pan A; Schumacher S; Gao T
    Phys Rev Lett; 2023 Sep; 131(13):136901. PubMed ID: 37831991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of all-optical vortex switching in exciton-polariton condensates.
    Ma X; Berger B; Aßmann M; Driben R; Meier T; Schneider C; Höfling S; Schumacher S
    Nat Commun; 2020 Feb; 11(1):897. PubMed ID: 32060289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.